




免费预览已结束,剩余8页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
牛科(哺乳纲:偶蹄目)动物与生境利用有关的适应形态模式动物52(6):971987,2006ActaZoologicaSinicaCharacterizingadaptivemorphologicalpatternsrelatedtohabitatuseandbodymassinBovidae(Mammalia:Artiodactyla)ManuelMENDOZA,PaulPALMQVISTDepartamentodeEcologiaYGeologia,FacultaddeCiencias,UniversidaddeMdlaga,Mdlaga29071,SpainAbstractAmultivariateanalysisofthepostcranialskeletonofextantbovidsrevealspatternsofosteologicalfeaturesindicativeofecologicaladaptationsforhabitatuseandbodysizeThemorphologicalpatternsthatcharacterizethepostcranialanatomyofbovidspeciesfromeachhabitattypewereidentifiedwithstepwisecanonicaldiscriminantanalysisanddecisiontrees.atechniquebasedonmachinelearning.Theanalyseswerecarriedoutusing43measurementsfrom110extantbovidspecies.Thediscriminantfunctionsanddecisiontreesobtainedal1owaperfectdiscriminationamongbovidsadaptedtoopenplains,forestsandmountainousareas(100%ofcorrectreclassificationsobtainedinallcomparisons),usingsetsofvariablesmeasuredinallmajorlimbbonesaswellascombinationsofvariablesderivedexclusivelyfromsinglelimbdements.Giventhattheadjustedalgorithmsinvolvesmallsetsofpostcranialmeasurements.theycanalsobeappliedtononcompletespecimenspreservedinarchaeologicalandpaleontologicalassemblages,thusbeingusefulforestimatingthelocomotorperformancesofancienttaxa.Thesealgorithms.indicativeofecologicaladaptationsforhabitatuse,combinedwiththoseadjustedwithcraniodentalmeasurementsforestimatingthedietarypreferencesofbovidspecies.havethepotentialforcharacterizingthepaleoautecologyofextincttaxaandmaybeusedinpaleoenvironmentalreconstruction.Wealsoanalyzeifmultipleregressionequationsshowhigherpredictiveabilityforestimatingbodymassthansimpleregressionequations,andproposethebestalgorithmsobtainedfrompostcranialmorphologicalvariablesmeasuredineachsinglemajorlimbbone【ActaZoologicaSinica52(6):971987,2006.KeywordsBovidae,Ecomorphology,Habitatuse,Bodymass,Discriminantanalysis,Decisiontrees牛科(哺乳纲:偶蹄目)动物与生境利用有关的适应形态模式*ManuelMENDOZAPaulPALMQVISTDepartamentodeEcologiaYGeologia,FacultaddeCiencias,UniversidaddeMdlaga,Mdlaga29071,Spain摘要对广义牛科动物颅后骨骼的多元变量分析揭示了牛科生境利用和体型之间的骨学特征.利用逐步分辨分析方法和一个基于机器学习的决策树方法鉴别了每种生境中牛科动物颅后解剖结构的形态特征.从110个广义牛科动物测量了43个指标进行了这项分析.利用所有主要肢骨测量值和以单根肢骨测量为主的测量值获得的分辨函数和决策树可以完美地区分适应开阔生境,森林和山地的牛科动物(在所有分析中得到了100%正确的再分类).由于调整的函数仅涉及到很小的颅后骨骼测量集,这些函数可以应用于研究考古学和古生物学发掘物中保存的不完整标本.这些表征生境利用的生态适应函数与那些用颅齿部性状建立,用于推测牛科动物食物选择的函数结合,具有刻画已灭绝的分类类群的古个体生态学和重建古环境的潜力.我们还分析了多元回归是否较单一因子回归表现出较高的预测能力,并提出了从每一种单根主要肢骨测量的颅后形态变量得到的最好代数函数动物52(6):971987,2006.关键词牛科生态形态学生境利用体重分辨分析决策树Associationsofpostcranialstructureinextantfiedinordertocharacterizemorphologicaladaptationsbovidsrelatedtolocomotorperformancesareidentitogrosshabitattypes(flatgrasslands,forests,andReceivedApr.22,2006;acceptedSep.18.2006ThisresearchwasfundedbyprojectCGL200401615/BTE.ManuelMENDOZAwasfundedbyapostdoctoralgrantfromtheSpanishCICYTandtheFulbrightVisitingScholarProgram.*Correspondingauthor.E-mail:ppbuII1a.es2006动物ActaZoologicaSinica972动物52卷hillyandmountainousareas)usingamultivariateapproach.Theseassociationsmaybeusedtoreconstructthelocomotorbehaviorandhabitatpreferencesofancientbovidspreservedinfossilassemblages,andthusallowtheirautecologytobeestimated(e.g.,Palmqvisteta1.2003;Mendozaeta1.,2005).Inaddition,thebodysizeofextantbovidsiscorrelatedtothedimensionsofthepostcranialskeletonandmultipleregressionfunctionsareprovidedforpredictingthemassofancientspecies(e.g.,Mendozaeta1.,2006).Postcranialfeaturescorrelatedwithhabitattypeandlocomotoradaptationsincludetheshapeofmajorlimbbones(Scott,1985;Kappelmaneta1.,1997;PlummerandBishop,1994)andoftheankleandfoot(KShlerandMoy6So16,2001;DeGustaandVrba,2003,2005a,b).Thisstudyonpostcranialadaptationsofbovidsdiffersfrompreviousonesintheuseofamultivariateanalysistoevaluateabroadsetofmeasurementsfromdifferentlimbelementsofvariousextantbovidstoidentifymorphologicalcorrelatesforhabitat.Manyauthorshaveusedsimplelogtransformedbivariateleastsquaresregressionequationstoestimatethebodymassofextinctspeciesbasedonsingleanatomicalmeasurements.suchastheareaofthefirstlowermolar(e.g.,Beardeta1.,1996;Gagnon,1997;Kayeta1.,1998),thevolumeofthefemoralhead(CartelleandHartwig,1996;Kappelmanetal_,1997),ortheareaoftheeyeorbit(KordosandBegun,2001).Asmightbeexpected,nosinglemorphologicalvariableshowsaperfectcorrelationwithbodymass,hencereducingtheprecisionandreliabilityofpredictionsderivedfromthem,apparentinthelargestandarderrorsandwideconfidenceintervalsaroundsuchestimates.Arelativelycommonstrategyforavoidingsuchproblemsistocombinepredictionsfromseveralallometricequations,basedondifferentanatomicalstructures.tocalculatetheaveragebodymassforextincttaxa(e.g.,MacFadden,1986;Gingerich,1990;Anyonge,1993,1996;Walkereta1.,1993;McCrossin,1994;Viranta,1994;Flynneta1.,1995;Geboeta1.,1997;Farifiaetal_,1998;Christiansen,1999;Delsoneta1.2000;K6hlerandMoy&So16,2004;ChristiansenandHarris,2005).Becausemultipleregressionexploitsthecomplementaryinformationcontainedinthemorphologicalvariablesstudied,itisprobablythebestsuitedmethodologytocompensatefortheinfluenceofthephylogenyorspecificfunctionaladaptations(Andersoneta1.,1985;Damuth,1990;Jungers,1990;HammerandFoley,1996;Biknevicius,1999;Palmqvisteta1.,1999,2002;Payseureta1.,1999;Mendozaeta1.2006).Forthestudyoflocomotorbehavior,deviationsfromtheexpectationsofgeometricscalingareusedtoinfertheecologicaladaptationsofspeciesintermsoflocomotorperformanceandhabitatchoice(e.g.,morecursoriallyadaptedbovidslivinginplainsandsavannahaveproportionallylongerdistalelements,thosespecializedforclimbinginmountainouscountryhaveshortermetapodials.whereasthoselivinginpartlyopenwoodlandorhillycountrytendtohavebonesofintermediatelengths).Forthestudyofbodymass,however,theeffectsofthesedeviationshavetobeminimizedandthebestestimatorsofbodymassarethedimensionsoftheproximallimbsegments(Kappelmaneta1.,1997).1MaterialsandmethodsAmultivariateapproachisusedtoanalyzemorphologicalfeaturesinthepostcranialskeletonofextantbovids,featureswhichareseentobeindicativeofbodysizeandecologicaladaptationsforhabitatuse.Theanalysesareperformedusing43measurementstakenfrom110extantspeciesinScotts(1985)database.ThesemeasurementsaredescribedinAppendixIandrepresentedinFig.1.Fordetailsonthespecimensusedforcalculatingthespeciesmeans,seeScott(1985).?1.1HabitatadaptationsAssociationsofmorphologicalfeaturesrelatedwithhabitatadaptationsinbovidswereidentifiedbasedon42sizeadiustedvariables.Thesesizetransformedvariablesareobtainedbydividingeachmeasurementbythewidthoftheproximalarticularsurfaceoftheradius(Rd,),avariablethatscalesisometricallywithbodvsizeandishighlycorrelatedwithmass(rz=0.98).0bviously,Rd,wasnotsizeadiustedanditwasnotdirectlyusedasavariable.Thespeciesweredividedintothreediscretegroupsfortheanalysis,correspondingtothreegeneraltypesofhabitat:flatgrasslands,forests,andhillyandmountainousareas.Accordingtotheinformationavailable,only71outofthe110bovidspeciescouldbeunequivocallyclassifiedascharacteristicofoneofthesegrosshabitattypes(seeAppendix1I):46speciesareassociatedwithopenplains,13aretypicalofforestedareas,andtheother12speciesareadaptedtomountainousterrain.Thesegeneraltypesofhabitatrepresentaratherheterogeneousmosaicofhabitatandlocomotoradaptationsinbovids.However.ifthehabitattypeswerefurthersubdivided,thiswouldre.sultinadecreaseofthenumberofspeciesassociatedwitheachofthem,whichwouldleadtoahigherprobabilityofobtainingagooddiscriminationeitherbychanceorbyclosephylogeneticrelationship(seebelow).Thereare39bovidspecieswhichhavetincertainhabitatpreferencesorthatlireinmorethanonehabitattypethatwerenotincludedinthestatist/6期Manue1MENDOZAeta1.:Habitatadaptationsandbodysizeinbovids973calanalyses.ThespeciesofthegenusOryxareagoodexampleofthosebovidsthatcouldnotbeunequivocallyassignedtoonehabitatcategory:thefringe-earedoryx(0.gazella)livesinaridgrasslands.forestedsavannas,semi.desertplains,thickbrush,andnearrockyhillsides.Therefore,0.gazellacouldbeclassifiedinanyofthethreetypesofhabitatcompared(i.e.,openplains,forestandmountainousareas).Similarly,theformerhabitatoftheArabiansoryx(0.1eucoryx)wastheflatandundulatinggravelplainsintersectedbyshallowwadisanddepressions,andthedunesedgingsanddeserts,withadiversevegetationoftrees,shrubs,herbs,andgrasses.Finally,thescimitar-hornedoryx(0.tao)inhabitsthesub.desertlandsandisfoundinrollingdunes,grassysteppesandwoodedinter-dunaldepressions.Thediscriminantfunctions,however,wereemployedforpredictingthehabitatpreferencesofthe39speciesnotusedintheiradjustment.Associationsofmorphologicalfeaturescharacter.isticofeachtypeofhabitatwereidentifiedusingstepwisecanonicaldiscriminantanalysis(SCDA)(Man.dozaandPalmqvist,2006)ratherthanprincipalcomponentsanalysis(PCA)becausethelattertechniqueisnotappropriateforidentifyingparticularmorphologicalpatternsindiscretegroupingsofspecies.Incontrast,SCDAisspecificallydesignedtoidentifythosevariablesinvolvedinthedifferencesbetweenthegroupscomparedanditpermitstheidentificationofcombinationsofmeasurementsthathavegreaterpotentialforspecificapplications(e.g.,intheanalysisofboneremainsfromarchaeologicalandpaleontologicalassemblages)thanPCA.Althoughtheanalysiswasconductedoncompleteelements,thealgorithmscanalsobeappliedtoincompletespecimens,giventhattheyinvolvesmallsetsofpostcranialvariables(seebelow).Speciesmeanswereusedratherthanvaluesforindividualspecimens,becausealthoughtherearemorphologicaldifferencesrelatedtointraspecificvariability(e.g.,sexualdimorphism),weexpectthatmostbovidspeciestheywillshareacommonmorphologicalpat-ternintheirpostcranialstructure.indicativeoftheirlocomotorperformance.Thealgorithmsproposedhereincludeonlyafewvariableswhosecontributiontothediscriminationamonghabitatgroupsisespeciallyrelevant.Indoingso,ourapproachdiffersfromtheoneusedinMandozaeta1.(2002),whichwasorientedtotheobtainingofcomplexalgorithmsthatallowustoinfertheecologicaladaptationsofancientspecies.Themainadvantageofthenewalgorithmsisthattheyidentifyro.bustmorphologicalpatternswhichenableustounder.standtherelationshipbetweenthepostcranialstruc.tureofbovidsandtheiradaptationstoliveindifferenthabitattypes.Minimizingthenumberofvariablesincorporatedinthealgorithms,wealsominimizetheprobabilityofobtainingagooddiscriminationmerelybychance,becausethisprobabilityincreaseswiththenumberofvariablesincludedinthediscriminantfunctions(seediscussioninMendozaeta1.,2002,2005).Althoughtheresultingalgorithmsmaymisclassifysomespecies,theyaremoreaccuratethanthosebasedonmanymeasurements,becausetheyincludeonlythosemorphologicaltraitsmoreclearlyrelatedwiththeadaptivepatterns.Athirdadvantageofourapproachisthatthesesimplemorphologicalpatternscanoftenbedepictedinbivariatescatterplots,whichareausefultoolfordeterminingthehabitatadaptationsofextinctbovids.Itisworthnotingthatifthediscriminantfunc.tionsareappliedtoanextinctbovidthatshowsapostcranialmorphologyidenticaltoanyofthe39modernspecieswithnoclearhabitatpreferences,thisspecieswillbeclassifiedinoneofthethreehabitatgroupscompared(open/forested/mountain),asthediscriminantfunctionsaredesignedfordoingso.T,hisdoesnotmeanthattheextinctspeciesonlylivedwithinthepredictedhabitat;rather,whatthismeansisthatsuchhabitatistheoneforwhichthepostcranialanatomyoftheancientspecieswasbetteradapt.ed.Anotherimportantaspectofthenewmethodologicalapproachisthatthespeciesanalyzedareweightedaccordingtothediversityoftheirtaxonomicgroupings,whichhelpstoavoidtheobtainingofphylogeneticallyconstrainedpatterns(seebelowandMendozaandPalmqvistinthisvolume).Overweigh.ingthespeciesofthosegroupsunderrepresentedinthedatabaseforcestheanalysistotakeintoaccounttheinformationcontributedbythesefewspeciesatthesamelevelthanthatprovidedbythespeciesfromothergroupsmoreabundantlyrepresented.Inthisway,thetaxonomicevennessofthedatabaseismaxi.mizedandthemorphologicalpatterncapturedbytheresultingalgorithmsismoregenera1.However,phy.1ogenyisnottheonlyfactorthatmaydisruptecologi.calinferences.becausebovidsmaymoveintonewhabitatsorhavealternativemodesoflocomotionnotexpressedmorphologicallyinthesamewayasinotherbovids(e.g.,seethepeculiaradaptationsofthepostcranialskeletoninMyotragusbalearicus,anandemicfossilgoatfromthePleistoceneoftheBalearicIslandsintheMediterraneanSea;K6hlerandMoyflSo16,2001,2004).Twotypesofalgorithmswereobtained:1)thoseinvolvingmeasurementsfromacombinationofallmajorlimbbones;and2)algorithmsobtainedfromsetsofmorphologicalvariablesestimatedinasinglelimbbone.Inthesecondcase,thevariablesweresize-ad974动物52卷justed.Althoughalgorithmsdevelopedforsinglelimbboneswillhavealowerdiscriminationpowerthanthosebasedonmeasurementsfromseveralbones,theformercanbeusefultoapplytoskeletalremainsfromdifferentindividualsortodisarticulatedandfracturedspecimens(seereviewsinArribasandPalmqvist,1998;PalmqvistandArribas,2001).Thealgorithmscanbeusedtocharacterizethee.cologicaladaptationsofbovidspeciesnotincludedintheoriginaldataset.Inordertoidentifymorecomplexcombinationsofalgorithms,amachinelearningprogram.calleddecisiontrees(Quinlan,1985),wasused.Decisiontreesrepresentatypeofmachinelearning,wherebycomputersystemsacquireknowledgeinductivelyfromtheinputofalargenumberofsamples(e.g.,bovidspeciesandpostcranialmeasurementsinourcase).Theproductoft
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八中自主招生考试题及答案
- 解析卷公务员考试《常识》同步练习试题(含答案及解析)
- 护理查对制度试题(含答案)
- 贵州企业招聘:2025贵州黔晨综合发展有限公司招聘15人考前自测高频考点模拟试题及完整答案详解1套
- 2025年在线职业技能认证平台投资风险评估分析报告
- 2025年文化娱乐产业产业链重构与协同发展报告
- 2025年婴幼儿配方食品营养配方研究进展与挑战分析报告
- 2025年城市慢行系统建设与城市交通拥堵治理创新策略可行性研究报告
- 2025年教育行业质量评估与认证体系在学校特色教育中的应用报告
- 2025年海洋生态修复政策与海洋生物保护研究报告
- 4.《花之歌》教学设计-2024-2025学年统编版语文六年级上册
- 2025国投生物制造创新研究院有限公司招聘(31人)考试备考试题及答案解析
- 新学期,新征程+课件-2025-2026学年高二上学期开学第一课主题班会
- 2025新版企业员工劳动合同范本
- 医院信息化建设中长期规划(十五五规划2025年)
- 国家中医药管理局《中医药事业发展“十五五”规划》全文
- 阿尔茨海默病及其他类型痴呆临床路径表单
- 公开课第一课素描基础入门课件
- 数据结构ppt课件完整版
- GB∕T 36527-2018 洁净室及相关受控环境 节能指南
- 应用语言学(全套课件197P)
评论
0/150
提交评论