数学北师大版九年级下册梯形的倾斜程度.docx_第1页
数学北师大版九年级下册梯形的倾斜程度.docx_第2页
数学北师大版九年级下册梯形的倾斜程度.docx_第3页
数学北师大版九年级下册梯形的倾斜程度.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、教学目标: (一)知识与技能目标:1、经历探索直角三角形中边角关系的过程.理解正弦、余弦的意义和与现实生活的联系.2、能够用sinA, cosA表示直角三角形中斜边与直角边的比,表示生活中物体的倾斜程度,能够用正弦、余弦进行简单的计算. (二)过程与方法目标:1、体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.2、体会解决问题的策略的多样性,发展实践能力和创新精神. (三)情感态度与价值观要求:1、积极参与数学活动,对数学产生好奇心和求知欲.2、形成实事求是的态度以及独立思考的习惯.二、教学重难点:教学重点:理解正弦、余弦的数学意义,密切数学与生活的联系.教学难点:理解正弦、余弦的数学意义,并用它来表示两边的比. 三、教学过程 第一环节 创设情境 (1)我们在上一节课学习了直角三角形中的一种边与角的关系:锐角的三角函数-正切函数。即:在直角三角形中,若一个锐角的对边与邻边的比值是一个定值,那么这个角的值也随之确定。在RtABC中,锐角A的对边与邻边的比叫做A的正切,记作tanA,当RtABC中的一个锐角A确定时,其它边之间的比值也确定吗?今天这节课,我们就来学习第九册(下)第一章:直角三角形的边角关系:正弦与余弦。 (2)上节课,我们研究了“陡”这个字,明确了梯子摆放的“陡”与“缓”,是与梯顶、 梯脚到墙角的距离比有关的。下面请同学们模拟实验,是否还与梯长与梯顶或梯脚到墙角的距离比有关呢1.1从梯子的倾斜程度谈起 第二环节 探求新知 1、摆一摆请大家拿出我们课前准备的模拟墙体和两架模拟梯子:(1)首先,把两架梯子摆在同一面墙上,使其中一架梯子比较陡。(2)我们在摆的过程中,要仔细观察,认真思考,探索一下,要想把一个梯子摆得陡一些,除了与倾斜角的大小有关之外,还与那些因素有关呢?(3)通过观察,我们可以得到:要想把一个梯子摆得陡一些,与梯子的对边与邻边有关。那么是不是单纯地与倾斜角的对边或邻边有关呢?为了探索这个一般规律,请同学们接着来摆梯子,使其中一架梯子比较陡。这一次,我们要边摆,边度量每个梯子倾斜角的对边与邻边,并计算每个倾斜角的对边与邻边的比值,之后每组填好实验报告。(展示数据及结论)(4)实验结论:梯子越陡,倾斜角的对边与斜边的比值越大,邻边与斜边的比值越小。 2、想一想:上节课,我们研究了:在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,我们可以用一种巧妙的方法得到梯子的倾斜程度:在梯子上任选一点B1,、B2。 3、有关的概念在Rt ABC中,如果锐角A确定,那么A的对边与斜边的比,叫做A的正弦。记作sinA.A的邻边与斜边的比也随之确定,这个比叫做A的余弦。记作cosA.注意的问题:(1)sinA,cosA中常省去角的符号“”。(2)sinA,cosA没有单位,它表示一个比值。(3)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”。 (4)在初中阶段,sinA,cosA中,A是一个锐角。 4、议一议:梯子的倾斜程度与sinA,cosA的关系:梯子AB越陡,sinA的值越大 , cosA的值越小 5、例题分析:例1:在RtABC中,B=90,AC=200,sinA=0.6.求:BC的长.(老师期望:请你求出cosA,tanA,sinC,cosC和tanC的值.你敢应战吗?) 例2在RtABC中,C=90,AC=10,cosA=12/13 ,求:AB,sinB(老师期望:注意到这里cosA=sinB,其中有没有什么内有的关系?)第三环节 随堂练习 1、在等腰ABC中,AB=AC=5,BC=6.求:sinB,cosB,tanB(老师提示:过点A作AD垂直于BC于D。) 2、在RtABC中,C=900,BC=20,sinA=4/5,求:ABC的周长 3、在RtABC中,锐角A的对边和邻边同时扩大100倍,sinA的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不能确定 4、已知A,B为锐角 (1)若A=B,则sinA sinB; (2)若sinA=sinB,则A B。 5、如图, C=90,CDAB.,SinB=( )=( )=( ) 6、在上图中,若BD=6,CD=12。求cosA的值。(老师提示:模型“双垂直三角形”的有关性质你可曾记得。) 7、如图,分别根据下面两图,求出A的三个三角函数值。 8、在RtABC中,C=90,AC=3,AB=6,求sinA和cosB。(老师提示:求锐角三角函数时,勾股定理的运用是很重要的.) 9、在等腰ABC中,AB=AC=13,BC=10,求sinB,cosB。 10、在梯形ABCD中,AD/BC,AB=DC=13,AD=8,BC=18。求:sinB,cosB,tanB.(老师提示:作梯形的高是梯形的常用辅助,借助它可以转化为直角三角形。)第四环节 小结 1.锐角三角函数定义:sinA,cosA,tanA 是在直角三角形中定义的,A是锐角(注意数形结合,构造直角三角形)。sinA,cosA,tanA 是一个完整的符号,表示A的正切,习惯省去“”号;sinA,cosA,tanA是一个比值。注意比的顺序,且sinA,cosA,tanA均0,无单位。sinA,cosA,tanA 的大小只与A的大小有关,而与直角三角形的边长无关。角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等。 2请思考:在RtABC中, sinA和cosB有什么关系? 第五环节 体会数学中的某些定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏极深. 高斯 第六环节 作业1.在ABC中,AB=5,BC=13,AD是BC边上的高,AD=4。求:CD,sinC.2.在RtABC中,BCA=90,CD是中线,BC=8,CD=5。求sinACD,cosACD和tanACD.3.在RtABC中,C=90,sinA和cosB有什么关系?4.在RtABC中,C=90,sinA和cosB有什么关系? 四、教学反思 由于上节课学生学习了三角函数中的正切,所以本节课结合初中学生身心发展的特点,运用了类比法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论