数学人教版八年级下册菱形(二).doc_第1页
数学人教版八年级下册菱形(二).doc_第2页
数学人教版八年级下册菱形(二).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

18.2.2 菱形(二)谭学平教学目标1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力二、重点、难点1教学重点:菱形的两个判定方法2教学难点:判定方法的证明方法及运用 三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成程度好一些的班级,可以选讲例3四、课堂引入1复习(1)菱形的定义:一组邻边相等的平行四边形; (2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直 通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形证明: 四边形ABCD是平行四边形, AEFC 1=2又 AOE=COF,AO=CO, AOECOF EO=FO 四边形AFCE是平行四边形又 EFAC, AFCE是菱形(对角线互相垂直的平行四边形是菱形) 例3(选讲) 已知:如图,ABC中, ACB=90,BE平分ABC,CDAB与D,EHAB于H,CD交BE于F求证:四边形CEHF为菱形 略证:易证CFEH,CE=EH,在RtBCE中,CBE+CEB=90,在RtBDF中,DBF+DFB=90,因为CBE=DBF,CFE=DFB,所以CEB=CFE,所以CE=CF所以,CF=CE=EH,CFEH,所以四边形CEHF为菱形六、随堂练习1填空:(1)对角线互相平分的四边形是 ;(2)对角线互相垂直平分的四边形是_;(3)对角线相等且互相平分的四边形是_;(4)两组对边分别平行,且对角线 的四边形是菱形2画一个菱形,使它的两条对角线长分别为6cm、8cm3如图,O是矩形ABCD的对角线的交点,DEAC,CEBD,DE和CE相交于E,求证:四边形OCED是菱形。七、课后练习1下列条件中,能判定四边形是菱形的是 ( )(A)两条对角线相等 (B)两条对角线互相垂直(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分2已知:如图,M是等腰三角形ABC底边BC上的中点,DMAB,EFAB,MEAC,DGAC求证:四边形MEND是菱形3做一做:设计一个由菱形组成的花边图案花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点画出花边图形 【教学反思】上完这堂课后,通过课堂上对学生的观察和课后对学生的了解,我可以感觉到下面几方面是处理得比较成功的: 1、课前准备对性质与判断的讲解是非常有用的,学生听完后基本上都能分清性质与判断,不再出现要写判断时写成性质的错误。 2、课前准备的对平行四边形、矩形的判定的复习,效果较好,一则进一步复习和巩固了平行四边形、矩形的判定,二则通过与性质的对比,从中发现了图形判定的真正由来:通过图形的特殊性(与众不同)来进行图形的判定。这样,就给我们导入菱形的判定带来了方便,不用我们去一一证明,根据我们学过的图形性质,学生顺理成章的得到了各个图形的判定,而且记忆深刻。 3、对矩形和菱形判定的分析也十分重要,一方面加深了学生对图形判定的理解,有助于他们进行记忆;另一方面,通过对图形的分析,也帮助学生分清了哪一些是某些图形的共性,哪一些是某一图形的个性,怎样通过图形的个性来识别图形。 4、通过对图形的性质的复习,进一步加深学生对图形的认识,对学生认识图形的判定起到很好的效果,通过图形的特殊性(与众不同)来进行图形的判定,比起书中用证明和画图的方法来说,效果更好。 5、课堂上通过对平行四边形、矩形、菱形的各条判定的横向对比及纵向比较,对学生判定的记忆,有很好的帮助。 6、 对本章所学知识的重点进行把握有助于学生学习目标的明确,使学生知道哪些知识要学,哪些知识要背,哪些知识要理解,哪些知识要会用,提高课堂的教学效率。 但是,本节课也存在着不足,如: 1、课堂中,讲解矩形的判定时,没能着重强调矩形是平行四边形,而是轻轻带过,是较为重大的失误,因为这样就很难讲清判断菱形时是只要写四边形呢,还是要写平行四边形,结果学生有写四边形的,有写平行四边形的,虽然在讲菱形的判定时有进行分析,但课后问学生,有较多学生感觉还是不清楚。后来我反思了一下,感到如果是在讲矩形时要强调矩形是平行四边形,判断四边形是不是矩形时,首先要确定是不是平行四边形,如:有一个角是直角的平行四边形是矩形;两条对角线互相垂直的平行四边形是矩形。而有三个角是直角的四边形是矩形这句话除外,原因是有三个角是直角,根据两组对角相等的四边形是平行四边形,我们可以确定该四边形是平行四边形,因此判定中可以省略“平行”两个字。那么,学生在写菱形判定时,肯定会写出: (1) 一组邻边相等的平行四边形是菱形 (2) 四条边都相等的平行四边形是菱形 (3) 两条对角线互相垂直的平行四边形是菱形 (4) 每条对角线平分一组对角的平行四边形是菱形 而后,我们再对(2)进行分析,让学生发现“四条边都相等”这句话就可以说明该四边形是平行四边形了,因此“四条边都相等的平行四边形是菱形”可简写成“四条边都相等的四边形是菱形”。 菱形判定(4)这个特性较为特殊,平时也很难用到,给学生简单提一提,告诉他们这个特性只有菱形才有,因此“每条对角线平分一组对角的平行四边形是菱形”也可缩写成“每条对角线平分一组对角的四边形是菱形”,就可以了。 2、在备课时就有感到时间可能会有点紧,在实际上课中发现,本节课时间果然不够,虽然可以勉强上到第三部分小组讨论,但讨论的时间太短,大概只有3分钟,因此,要是当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论