




免费预览已结束,剩余4页可下载查看
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2简单的三角恒等变换【考纲要求】1、能利用单位圆中的三角函数线推导出 的正弦、余弦、正切的诱导公式。2、理解同角三角函数的基本关系式: 【基础知识】一、同角的三大关系:倒数关系 tancot=1 商数关系 = tan = cot平方关系 温馨提示:(1)求同角三角函数有知一求三规律,可以利用公式求解,最好的方法是利用画直角三角形速解。(2)利用上述公式求三角函数值时,注意开方时要结合角的范围正确取舍“”号。二、诱导公式口诀:奇变偶不变,符号看象限 用诱导公式化简,一般先把角化成的形式,然后利用诱导公式的口诀化简(如果前面的角是90度的奇数倍,就是 “奇”,是90度的偶数倍,就是“偶”;符号看象限是,把看作是锐角,判断角在第几象限,在这个象限的前面三角函数的符号是 “+”还是“-”,就加在前面)。 用诱导公式计算时,一般是先将负角变成正角,再将正角变成区间的角,再变到区间的角,再变到区间的角计算。三、和角与差角公式 :; 变用:= ()(1)四、二倍角公式:= .五、注意这些公式的来弄去脉,这些公式都可以由公式推导出来。六、注意公式的顺用、逆用、变用。如:逆用 变用 七、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。,其中八、方法总结1、三角恒等变换方法观察(角、名、式)三变(变角、变名、变式)(1) “变角”主要指把未知的角向已知的角转化,是变换的主线,如=(+)=()+, 2=(+)+ (), 2=(+)(),+=2 , = ()()等.(2)“变名”指的是切化弦(正切余切化成正弦余弦),(3)“变式指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。2、恒等式的证明方法灵活多样从一边开始直接推证,得到另一边,一般地,如果所证等式一边比较繁而另一边比较简时多采用此法,即由繁到简.左右归一法,即将所证恒等式左、右两边同时推导变形,直接推得左右两边都等于同一个式子.比较法, 即设法证明: 左边右边=0 或 =1;分析法,从被证的等式出发,逐步探求使等式成立的充分条件,一直推到已知条件或显然成立的结论成立为止,则可以判断原等式成立.【例题精讲】例1 已知为第四象限角,化简:解:(1)因为为第四象限角 所以原式= 例2 已知,化简解:,所以原式=例3 tan20+4sin20解:tan20+4sin20= 3.2简单的三角恒等变换强化训练【基础精练】1已知是锐角,且sin,则sin的值等于()A. B C. D2若2,则 的值是()AsinBcos Csin Dcos3.等于 ()A.sin B.cos C.sin D.cos4.已知角在第一象限且cos,则等于 ()A.B. C. D. 5.定义运算adbc.若cos,0,则等于()A. B. C. D. 6.已知tan和tan()是方程ax2bxc0的两个根,则a、b、c的关系是 ()A.bac B.2bac C.cba D.cab7.设a(sin56cos56),bcos50cos128cos40cos38,c,d(cos802cos2501),则a,b,c,d的大小关系为 ()A.abdc B.badc C.dabc D.cadb8函数ysin2xsin2x,xR的值域是()A. B.C. D.9.若锐角、满足(1tan)(1tan)4,则.10.设是第二象限的角,tan,且sincos,则cos.11.已知sin(x)=,0x,求的值。12.若,求+2。【拓展提高】1、设函数f(x)sin()2cos21(1)求f(x)的最小正周期.(2)若函数yg(x)与yf(x)的图像关于直线x1对称,求当x0,时yg(x)的最大值 2.已知向量a(cos,sin),b(cos,sin),|ab| (1)求cos()的值;(2)若0,0,且sin,求sin.3、求证:2cos(+)=.【基础精练参考答案】4C【解析】原式2(cossin)2().5.D【解析】依题设得:sincoscossinsin ().0,cos(). 又cos,sin.sinsin()sincos()cossin() ,.6.C【解析】 tantan()1,1,bac,cab.7.B【解析】asin(5645)sin11,bsin40cos52cos40sin52sin(5240)sin12,ccos81sin9,d(2cos2402sin240)cos80sin10,badc.8.C【解析】ysin2xsin2xsin2xcos2xsin,故选择C.9. 【解析】由(1tan)(1tan)4,可得,即tan().又(0,),.10. 解析:是第二象限的角,可能在第一或第三象限,又sincos,为第三象限的角, cos0.tan,cos,cos .12.【解析】,+2,又tan2=,+2=【拓展提高参考答案】1、【解析】 (1)f(x)sincoscossincosxsinxcosxsin(x),故f(x)的最小正周期为T8.(2)法一:在yg(x)的图象上任取一点 (x,g(x),它关于x1的对称点(2x,g(x).由题设条件,点(2x,g(x)在yf(x)的图象上,从而g(x)f(2x)sin(2x)sinxcos(x),当0x时, x,因此yg(x)在区间0,上的最大值为g(x)maxcos.法二:因区间0,关于x1的对称区间为,2,且yg(x)与yf(x)的图象关于x1对称,故yg(x)在0,上的最大值为yf(x)在,2上的最大值,由(1)知f(x)sin(x),当x2时,x,因此yg(x)在0,上的最大值为g(x)maxsin. 2、【解析】(1)a(co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信企业劳动合同与用户隐私保护合同
- 跨国公司商务英语合同翻译及法律风险评估合同
- 中药专业一试题及答案
- 孵化项目总结汇报
- 2025至2030中国土豆去皮切片机设备行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国板鞋行业产业运行态势及投资规划深度研究报告
- 2025至2030中国无内胎轮胎阀行业市场深度研究与战略咨询分析报告
- 2025至2030医用包封合机行业产业运行态势及投资规划深度研究报告
- 2025至2030中国镀锌弹簧钢丝行业项目调研及市场前景预测评估报告
- 公路质量管理工作汇报
- 高中语文-“病句辨析”模块“语序不当”知识点
- 粮食培训考试题及答案
- 工程整改方案及措施(3篇)
- 2025标准合同范本:餐饮业劳动合同书
- 政府法律顾问聘用合同
- 部编人教版六年级上册道德与法治全册教案
- 2025年共青团入团考试测试题库及答案
- 2024中国华电集团有限公司湖南分公司本部面向系统内公开招聘5人笔试参考题库附带答案详解
- 工学结合的课程开发与教学设计
- 体育科学体系与体育原理优秀课件
- 现代控制理论教案Word版
评论
0/150
提交评论