2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析.doc_第1页
2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析.doc_第2页
2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析.doc_第3页
2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析.doc_第4页
2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析.doc_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2019年中考数学真题分类汇编第二期专题11函数与一次函数试题含解析编 辑:_时 间:_函数与一次函数一.选择题1. (20xx湖北江汉油田、市、市、仙桃市3分)甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m=160;点H的坐标是(7,80);n=7.5其中说法正确的是()ABCD【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选:A【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态2. (20xx湖北随州3分)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()ABCD【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A.C均错误;故选:B【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系3. (2018江苏宿迁3分)函数 中,自变量x的取值范围是( )A. x0 B. x1 C. x1 D. x1【答案】D【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.【详解】依题可得:x-10,x1,故选D.【点睛】本题考查了函数自变量的取值范围,熟知分式有意义的条件是分母不为0是解本题的关键.4.(2018江苏徐州2分)函数y=中自变量x的取值范围是()Ax1Bx1Cx1Dx=1【分析】根据分母不能为零,可得答案【解答】解:由题意,得x+10,解得x1,故选:C【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键5.(2018江苏无锡3分)函数y=中自变量x的取值范围是()Ax4Bx4Cx4Dx4【分析】根据分母不等于0列式计算即可得解【解答】解:由题意得,4x0,解得x4故选:B【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负6.(2018江苏宿迁3分)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A. 5 B. 4 C. 3 D. 2【答案】C【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.【详解】设直线l解析式为:y=kx+b,则l与x轴交于点A(- ,0),与y轴交于点B(0,b),(2-k)2=8|k|,k2-12k+4=0或(k+2)2=0,k=64或k=-2,满足条件的直线有3条,故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b与x轴、y轴的交点坐标.7.(2018内蒙古包头市3分)如图,在平面直角坐标系中,直线l1:y=x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k0)与直线l1在第一象限交于点C若BOC=BCO,则k的值为()ABCD2【分析】利用直线l1:y=x+1,即可得到A(2,0)B(0,1),AB=3,过C作CDOA于D,依据CDBO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=【解答】解:直线l1:y=x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),RtAOB中,AB=3,如图,过C作CDOA于D,BOC=BCO,CB=BO=1,AC=2,CDBO,OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,故选:B【点评】本题主要考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解8.(2018山东聊城市3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示下面四个选项中错误的是()A经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B室内空气中的含药量不低于8mg/m3的持续时间达到了11minC当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒此次消毒完全有效D当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A.正确不符合题意B.由题意x=4时,y=8,室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C.y=5时,x=2.5或24,242.5=21.535,故本选项错误,符合题意;D.正确不符合题意,故选:C【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型9. (2018资阳3分)已知直线y1=kx+1(k0)与直线y2=mx(m0)的交点坐标为(,m),则不等式组mx2kx+1mx的解集为()AxBCxD0【分析】由mx2(m2)x+1,即可得到x;由(m2)x+1mx,即可得到x,进而得出不等式组mx2kx+1mx的解集为【解答】解:把(,m)代入y1=kx+1,可得m=k+1,解得k=m2,y1=(m2)x+1,令y3=mx2,则当y3y1时,mx2(m2)x+1,解得x;当kx+1mx时,(m2)x+1mx,解得x,不等式组mx2kx+1mx的解集为,故选:B【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合11.(2018湖州3分)如图,已知直线y=k1x(k10)与反比例函数y=(k20)的图象交于M,N两点若点M的坐标是(1,2),则点N的坐标是()A. (1,2) B. (1,2) C. (1,2) D. (2,1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案详解:直线y=k1x(k10)与反比例函数y=(k20)的图象交于M,N两点,M,N两点关于原点对称,点M的坐标是(1,2),点N的坐标是(-1,-2)故选:A点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键12. (2018金华、丽水3分)某通讯公司就上宽带网推出A,B,C三种月收费方式这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【解析】【解答】解:A方式:当0x25时,yA=30;当x25时,图象经过点(25,30),(55,120),设 ,则 解得 ,则yA=3x-45,则 。B方式:当0x50时,yB=50;当x50时,图象经过点(50,50),(55,65),设 ,则 解得 ,则yB=3x-100,则 。C方式:yC=120.A. 每月上网时间不足25 h时,即x25时,yA=30,yB=50,yC=120,因为3050120,所以选择A方式最省钱,判断正确,故本选项不符合题意;B. 每月上网费用为60元时,对于 ,则60=3x-45,解得x=35;对于 ,则60=3x-100,解得x= ,因为35 0(A)(-5,3) k = y + 1 = 3 + 1 = - 4 0x- 55(B)(1,-3) k = y + 1 = - 3 + 1 = -2 0x22(D) (5,-1) k = y + 1 = - 1 + 1 = 0x515.(2018贵州遵义3分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+30的解集是()Ax2Bx2Cx2Dx2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=1.5,然后解不等式1.5x+30即可【解答】解:直线y=kx+3经过点P(2,0)2k+3=0,解得k=1.5,直线解析式为y=1.5x+3,解不等式1.5x+30,得x2,即关于x的不等式kx+30的解集为x2,故选:B16.(2018年湖南省市)函数y=中自变量x的取值范围是()Ax2Bx2Cx2且x3Dx3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围【解答】解:根据题意得:,解得:x2且x3故选:C【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负17(2018年湖南省市)将直线y=2x3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()Ay=2x4By=2x+4Cy=2x+2Dy=2x2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解【解答】解:y=2(x2)3+3=2x4化简,得y=2x4,故选:A【点评】本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键18(20xx湖南省市)(3分)小明参加100m短跑训练,2018年14月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A14.8sB3.8sC3sD预测结果不可靠【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解【解答】解:(1)设y=kx+b依题意得(1分),解答,y=0.2x+15.8当x=5时,y=0.25+15.8=14.8故选:A【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型19.(2018湖南长沙3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系根据图象,下列说法正确的是()A小明吃早餐用了25minB小明读报用了30minC食堂到图书馆的距离为0.8kmD小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可【解答】解:小明吃早餐用了(258)=17min,A错误;小明读报用了(5828)=30min,B正确;食堂到图书馆的距离为(0.80.6)=0.2km,C错误;小明从图书馆回家的速度为0.810=0.08km/min,D错误;故选:B【点评】本题考查的是函数图象的读图能力要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键20.(2018湖南湘西州4.00分)一次函数y=x+2的图象与y轴的交点坐标为()A(0,2)B(0,2)C(2,0)D(2,0)【分析】代入x=0求出y值,进而即可得出发一次函数y=x+2的图象与y轴的交点坐标【解答】解:当x=0时,y=x+2=0+2=2,一次函数y=x+2的图象与y轴的交点坐标为(0,2)故选:A【21. (2018资阳3分)已知直线y1=kx+1(k0)与直线y2=mx(m0)的交点坐标为(,m),则不等式组mx2kx+1mx的解集为()AxBCxD0【分析】由mx2(m2)x+1,即可得到x;由(m2)x+1mx,即可得到x,进而得出不等式组mx2kx+1mx的解集为【解答】解:把(,m)代入y1=kx+1,可得m=k+1,解得k=m2,y1=(m2)x+1,令y3=mx2,则当y3y1时,mx2(m2)x+1,解得x;当kx+1mx时,(m2)x+1mx,解得x,不等式组mx2kx+1mx的解集为,故选:B【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合点评】本题考查了一次函数图象上点的坐标特征,代入x=0求出y值是解题的关键二.填空题1. (20xx湖南郴州3分)如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且AOC=60,A点的坐标是(0,4),则直线AC的表达式是y=x+4【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4又1=60,2=30sin2=,CD=2cos2=cos30=,OD=2,C(2,2)设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=x+4,故答案为:y=x+4【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式2.(2018江苏宿迁3分)如图,在平面直角坐标系中,反比例函数(x0)与正比例函数y=kx、 (k1)的图象分别交于点A.B,若AOB45,则AOB的面积是_.【答案】2【分析】作BDx轴,ACy轴,OHAB(如图),设A(x1,y1),B(x2 , y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2, y2=x1, 根据SAS得ACOBDO,由全等三角形性质得AO=BO,AOC=BOD,由垂直定义和已知条件得AOC=BOD=AOH=BOH=22.5,根据AAS得ACOBDOAHOBHO,根据三角形面积公式得SABO=SAHO+SBHO=SACO+SBDO=x1y1+ x2y2= 2+ 2=2.【详解】如图:作BDx轴,ACy轴,OHAB,设A(x1,y1),B(x2 , y2),A.B在反比例函数上,x1y1=x2y2=2,解得:x1=,又,解得:x2=,x1x2=2,y1=x2, y2=x1,即OC=OD,AC=BD,BDx轴,ACy轴,ACO=BDO=90,ACOBDO(SAS),AO=BO,AOC=BOD,又AOB45,OHAB,AOC=BOD=AOH=BOH=22.5,ACOBDOAHOBHO,SABO=SAHO+SBHO=SACO+SBDO=x1y1+ x2y2= 2+ 2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.3.(2018江苏淮安3分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,按此规律操作下所得到的正方形AnBnCnDn的面积是()n1【分析】根据正比例函数的性质得到D1OA1=45,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答【解答】解:直线l为正比例函数y=x的图象,D1OA1=45,D1A1=OA1=1,正方形A1B1C1D1的面积=1=()11,由勾股定理得,OD1=,D1A2=,A2B2=A2O=,正方形A2B2C2D2的面积=()21,同理,A3D3=OA3=,正方形A3B3C3D3的面积=()31,由规律可知,正方形AnBnCnDn的面积=()n1,故答案为:()n1【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到D1OA1=45,正确找出规律是解题的关键4.(2018山东东营市3分)在平面直角坐标系内有两点A.B,其坐标为A(1,1),B(2,7),点M为x轴上的一个动点,若要使MBMA的值最大,则点M的坐标为【分析】要使得MBMA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求【解答】解:取点B关于x轴的对称点B,则直线AB交x轴于点M点M即为所求设直线AB解析式为:y=kx+b把点A(1,1)B(2,7)代入解得直线AB为:y=2x3,当y=0时,x=M坐标为(,0)故答案为:(,0)【点评】本题考查轴对称最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答5.(2018山东济宁市3分)在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(x1,y1)、P2(x2,y2)两点,若 x1x2,则 y1 y2(填“”“”“=”)【解答】解:一次函数 y=2x+1 中 k=20,y 随 x 的增大而减小,x1x2,y1y2 故答案为:5. (2018上海4分)如果一次函数y=kx+3(k是常数,k0)的图象经过点(1,0),那么y的值随x的增大而减小(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论【解答】解:一次函数y=kx+3(k是常数,k0)的图象经过点(1,0),0=k+3,k=3,y的值随x的增大而减小故答案为:减小【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k0,y随x的增大而增大;k0,y随x的增大而减小”是解题的关键6. (2018杭州4分).某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是_。【答案】60v80 【考点】一次函数的图象,一次函数的实际应用,一次函数的性质 【解析】【解答】解:根据题意得:甲车的速度为1203=40千米/小时2t3若10点追上,则v=240=80千米/小时若11点追上,则2v=120,即v=60千米/小时60v80故答案为:60v80【分析】根据函数图像可得出甲车的速度,再根据乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,可得出t的取值范围,从而可求出v的取值范围。7.(2018贵州安顺4分) 函数中自变量的取值范围是_【答案】【解析】试题解析:根据题意得,x+10,解得x-1故答案为:x-17. (20xx黑龙江大庆3分)已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为m【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【解答】解:把点(12,5)代入直线y=kx得,5=12k,k=;由y=x平移平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A.B,(如下图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m;在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=,m0,解得OD=,由直线与圆的位置关系可知6,解得m故答案为:m8.(20xx黑龙江龙东地区3分)在函数y=中,自变量x的取值范围是x2且x0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解【解答】解:由题意得,x+20且x0,解得x2且x0故答案为:x2且x0【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负9.(20xx湖北省恩施3分)函数y=的自变量x的取值范围是x且x3【分析】根据被开方数大于等于0,分母不等于0列式求解即可【解答】解:根据题意得2x+10,x30,解得x且x3故答案为:x且x3【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单10.(2018福建A卷4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BCx轴,ACy轴,则ABC面积的最小值为6【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,)将y=x+m代入y=,整理得x2+mx3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx3=0的两个根,根据根与系数的关系得出a+b=m,ab=3,那么(ab)2=(a+b)24ab=m2+12再根据三角形的面积公式得出SABC=ACBC=m2+6,利用二次函数的性质即可求出当m=0时,ABC的面积有最小值6【解答】解:设A(a,),B(b,),则C(a,)将y=x+m代入y=,得x+m=,整理,得x2+mx3=0,则a+b=m,ab=3,(ab)2=(a+b)24ab=m2+12SABC=ACBC=()(ab)=(ab)=(ab)2=(m2+12)=m2+6,当m=0时,ABC的面积有最小值6故答案为6【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质11.(2018福建B卷4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BCx轴,ACy轴,则ABC面积的最小值为6【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,)将y=x+m代入y=,整理得x2+mx3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx3=0的两个根,根据根与系数的关系得出a+b=m,ab=3,那么(ab)2=(a+b)24ab=m2+12再根据三角形的面积公式得出SABC=ACBC=m2+6,利用二次函数的性质即可求出当m=0时,ABC的面积有最小值6【解答】解:设A(a,),B(b,),则C(a,)将y=x+m代入y=,得x+m=,整理,得x2+mx3=0,则a+b=m,ab=3,(ab)2=(a+b)24ab=m2+12SABC=ACBC=()(ab)=(ab)=(ab)2=(m2+12)=m2+6,当m=0时,ABC的面积有最小值6故答案为6【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质12.(2018广西贵港3分)如图,直线l为y=x,过点A1(1,0)作A1B1x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;,按此作法进行下去,则点An的坐标为(2n1,0)【分析】依据直线l为y=x,点A1(1,0),A1B1x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),依据规律可得点An的坐标为(2n1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论