




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优点十六 利用空间向量求夹角一、求直线与直线的夹角例1:在长方体中,则直线与所成角的余弦值为【答案】【解析】在长方体中,以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则,设直线与所成角为,则,直线与所成角的余弦值为二、求直线与平面的夹角例2:正三棱柱的侧棱与底面边长相等,则与平面的夹角的余弦值为【答案】【解析】设,以为原点,建立空间直角坐标系坐标系如图,则,又平面的一个法向量,设与平面的夹角为,则,故三、求平面与平面的夹角例3:正方体中,二面角的大小是【答案】【解析】设正方体的棱长为,以为原点建立空间直角坐标系,设平面的法向量,则,取,得,设平面的法向量,则,取,得,设二面角的平面角为,二面角的大小为对点增分集训一、选择题1已知四面体中,平面平面,为边长的等边三角形,则异面直线与所成角的余弦值为()ABCD【答案】A【解析】根据题意画出图形如下图所示:平面平面,平面平面,平面以过点且与平面垂直的直线为轴建立空间直角坐标系,则,异面直线与所成角的余弦值为2正方体的棱上(除去棱)到直线与的距离相等的点有个,记这个点分别为,则直线与平面所成角的正弦值为()ABCD【答案】D【解析】正方体的棱上到直线与的距离相等的点分别为:,的中点,的四等分点(靠近),假设与重合,的中点为,的四等分点(靠近)为,以为坐标原点,所在直线分别为,轴,建立空间直角坐标系,设,则,设平面的法向量,则,即,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为3如图所示,正方体的棱,的中点分别为,则直线与平面所成角的正弦值为()ABCD【答案】C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设正方体的棱长为,则,取平面的法向量为,设直线与平面所成角为,则,直线与平面所成角的正弦值为4在正方体中,点为的中点,则平面与平面所成的锐二面角的余弦值为()ABCD【答案】B【解析】以为原点建立如图所示的空间直角坐标系,设棱长为,则,设平面的一个法向量为,所以有,即,解得,平面的一个法向量为,即平面与平面所成的锐二面角的余弦值为二、填空题5在正方体中,分别是、的中点,则异面直线与所成角的余弦值为【答案】【解析】设正方体的棱长为,建立如图所示空间直角坐标系,则,异面直线与所成角的余弦值为6如图,在正方体中,分别为,的中点,则平面和平面所成二面角的正弦值为【答案】【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设正方体的棱长为,则,设平面的一个法向量,则,取,得,平面的一个法向量,设平面和平面所成二面角为,则,所以三、解答题7如图,在底边为等边三角形的斜三棱柱中,四边形为矩形,过作与直线平行的平面交于点(1)证明:;(2)若与底面所成角为,求二面角的余弦值【答案】(1)证明见解析;(2)【解析】(1)连接交于点,连接因为平面,平面,平面平面,所以又因为四边形为平行四边形,所以为的中点,所以为的中位线,所以为的中点又因为为等边三角形,所以(2)过作平面垂足为,连接,设,因为与底面所成角为,所以在中,因为,所以,因为平面,平面,所以又因为四边形为矩形,所以,因为,所以因为,平面,平面,所以平面因为平面,所以又因为,所以为的中点以为原点,分别以,所在直线为轴,轴,轴建立空间直角坐标系,如图则,因为,所以,因为,所以,设平面的法向量为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州贵阳机场股份公司质量安全部呼叫中心96967实习生招聘1人笔试历年参考题库附带答案详解
- 2025贵州毕节市水务投资集团有限责任公司及所属金沙弘禹供水有限责任公司招聘笔试历年参考题库附带答案详解
- 2025安徽芜湖市鸠江区招聘区属国有企业领导人员拟聘用人员考前自测高频考点模拟试题及答案详解(网校专用)
- 2025福建南平委党校教师招聘8人模拟试卷及一套答案详解
- 2025浙江省衢州市衢江区国有企业春季引才活动笔试人员等笔试历年参考题库附带答案详解
- 2025广东韶关市新丰县招聘暨选聘公办教师30人(编制)考前自测高频考点模拟试题含答案详解
- 2025广东广州花都城投西城经济开发有限公司第二次招聘项目用工人员23人笔试历年参考题库附带答案详解
- 2025江苏无锡市锡山区卫生健康系统招聘事业编制卫生人才15人(校园招聘)考前自测高频考点模拟试题带答案详解
- 2025广东肇庆市怀集县卫生健康局赴高校招聘卫生专业技术人员52人考前自测高频考点模拟试题完整参考答案详解
- 2025年吉安市青原区两山人力资源服务有限公司面向社会公开招聘临聘人员的模拟试卷及完整答案详解
- 2025贵州省贵阳市殡仪服务中心公开招聘(编外)工作人员25人考试参考试题及答案解析
- 2025年国家安全知识竞赛试卷(答案+解析)
- 2025年四川基层法律服务工作者执业核准考试复习题及答案二
- 2025年音乐学科会考练习卷及答案
- 化妆详细教程课件
- 良好学习习惯养成课件
- 2025年秋期新部编人教版五年级上册道德与法治教学计划+进度表
- 消防安全周巡查记录表
- 第三章 护理伦理学基本原则规范和范畴
- 能源化学与能源化工概论-第一章 能源简介
- FZ/T 52058-2021低熔点聚乳酸(LMPLA)/聚乳酸(PLA)复合短纤维
评论
0/150
提交评论