



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都龙文学校个性化教育教案 教师:徐老师 学生:_ 年级:_ 时间:_年_月_日 一、授课目的与考点分析:关于求空间的角及距离的问题空间的角是空间图形的一个要素,在异面直线所成的角、线面角、二面角等知识点上,较好地考查了学生的逻辑推理能力以及化归的数学思想二、重难点归纳 1 二面角平面角的作法:()定义法;()三垂线定理及其逆定理法;()垂面法. 注1 二面角的计算也可利用射影面积公式S=Scos来计算 注2 借助空间向量计算各类角会起到事半功倍的效果平面角计算法:()找到平面角,然后在三角形中计算(解三角形)或用向量 计算;()射影面积法:cos= ()向量夹角公式:|cos|= ,n1,n2是两面的法向量.(是锐角还是钝角,注意图形和题意取舍).*求平面的法向量:找;求:设a,b为平面内的任意两个 向量,n=(x,y,1)为的法向量,则由方程组 ,可求得法向授课内容:2空间中的距离主要指以下七种 (1)两点之间的距离 (2)点到直线的距离 (3)点到平面的距离 (4)两条平行线间的距离 (5)两条异面直线间的距离 (6)平面的平行直线与平面之间的距离 (7)两个平行平面之间的距离 七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离 七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离 在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点 求点到平面的距离 (1)直接法,即直接由点作垂线,求垂线段的长 (2)转移法,转化成求另一点到该平面的距离 (3)体积法 (3)向量法 求异面直线的距离 (1)定义法,即求公垂线段的长 (2)转化成求直线与平面的距离 (3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的 题型五、平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。向量法,先求两个平面的法向量所成的角为,那么这两个平面所成的二面角的平面角为或。例题3、如图所示,已知四棱锥的底面是边长为的菱形,平面,为的中点 (1)求证:平面平面; (2)求二面角的大小例题4、(2010北京16)(本小题共14分) 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CEAC,EFAC,AB=,CE=EF=1.()求证:AF平面BDE;()求证:CF平面BDE;()求二面角A-BE-D的大小。30 如图,在三棱锥中,平面平面(1)求证:平面;(2)求二面角的平面角的正切值2如图,在三棱锥中,平面,是上的一点,且平面(1)求证:平面;(2)求二面角的平面角的正弦值 来源:学+科+网Z+题型六、点、线、面之间的距离例题1、如图,已知ABCD是矩形,AB=a,AD=b,PA平面ABCD,PA=2c,Q是PA的中点 求 (1)Q到BD的距离;(2)A到平面BQD的距离 练习1、(2009重庆卷理)(本小题满分12分,()问5分,()问7分)如题(19)图,在四棱锥中,且;平面平面,;为的中点,求:()点到平面的距离;练习2、(2010重庆理数)(19)(本小题满分12分,(I)小问5分,(II)小问7分)如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。(I) 求直线AD与平面PBC的距离; 2010年江苏(14分)如图,四棱锥中,平面,(1) 求证:(2) 求点到平面的距离2010年江西20(本小题满分12分)如图,与都是边长为2的正三角形,平面平面,平面BCD,(1)求点A到平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 查询任务调度优化-洞察及研究
- 强电专业考试题及答案解析
- 电子类专业试题及答案
- 高一专业测试题及答案
- 一例癌痛患者的个案护理
- 2025至2030中国中性防锈汽轮机油行业项目调研及市场前景预测评估报告
- 母婴护理风险防控策略课件
- 颌面部多发性骨折护理
- 2025至2030中国MicroBulk交付系统行业项目调研及市场前景预测评估报告
- 生态修复项目树木种植与生态修复效果评估承包合同
- 赛轮埃及年产300万条半钢子午线轮胎项目可行性研究报告
- 催收行业培训课件
- 保护牙齿爱护牙齿2025年全国爱牙日全文课件
- 2025年海南事业单位联考笔试历年典型考题及考点剖析附带答案详解
- 新疆G20联盟文海大联考2025-2026学年高三上学期起点物理考试题(含答案)
- 2025年水发集团有限公司招聘(216人)备考练习试题及答案解析
- 2025年高考四川卷生物真题试卷(解析版)
- 2025年度保姆专业照护老年呼吸道疾病患者服务合同-温馨呵护
- 媒介素养教育培训课件
- 2025年地方病防治知识及技能考察试卷答案及解析
- 视频监控系统确保安全文明施工的技术组织措施
评论
0/150
提交评论