解决不等式恒成立问题的几种方法及指数不等式与对数不等式.doc_第1页
解决不等式恒成立问题的几种方法及指数不等式与对数不等式.doc_第2页
解决不等式恒成立问题的几种方法及指数不等式与对数不等式.doc_第3页
解决不等式恒成立问题的几种方法及指数不等式与对数不等式.doc_第4页
解决不等式恒成立问题的几种方法及指数不等式与对数不等式.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解决不等式恒成立问题的几种方法及指数不等式与对数不等式一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数,有1)对恒成立; 2)对恒成立 例1已知函数的定义域为R,求实数的取值范围。解:由题设可将问题转化为不等式对恒成立,即有解得。所以实数的取值范围为。若二次不等式中的取值范围有限制,则可利用根的分布解决问题。例2设,当时,恒成立,求实数的取值范围。解:设,则当时,恒成立Oxyx-1当时,显然成立;当时,如图,恒成立的充要条件为:解得。综上可得实数的取值范围为。二、最值法(分类讨论) 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立2)恒成立例3 已知,若恒成立,求a的取值范围. 解析 本题可以化归为求函数f(x)在闭区间上的最值问题,只要对于任意.若恒成立或或,即a的取值范围为.点评 对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法,只要利用恒成立;恒成立.本题也可以用零点分布策略求解.练习、若时,不等式恒成立,求的取值范围。解:设,则问题转化为当时,的最小值非负。(1) 当即:时, 又所以不存在;(2) 当即:时, 又 (3) 当 即:时, 又综上所得:例4函数,若对任意,恒成立,求实数的取值范围。解:若对任意,恒成立,即对,恒成立,考虑到不等式的分母,只需在时恒成立而得而抛物线在的最小值得注:本题还可将变形为,讨论其单调性从而求出最小值。三、确定主元(变换主元)在给出的含有两个变量的不等式中,学生习惯把变量看成是主元(未知数),而把另一个变量看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。例5、若不等式对满足的所有都成立,求的取值范围。解:设,对满足的,恒成立, 解得:例6对任意,不等式恒成立,求的取值范围。分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。解:令,则原问题转化为恒成立()。当时,可得,不合题意。当时,应有解之得。故的取值范围为。注:一般地,一次函数在上恒有的充要条件为。三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:1)恒成立2)恒成立实际上,上题就可利用此法解决。略解:在时恒成立,只要在时恒成立。而易求得二次函数在上的最大值为,所以。 例7已知函数时恒成立,求实数的取值范围。解: 将问题转化为对恒成立。令,则由可知在上为减函数,故即的取值范围为。注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。四、利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:,则且,不等式的解即为实数的取值范围。例5、当时,恒成立,求实数的取值范围。解:(1) 当时,则问题转化为 (2) 当时,则问题转化为综上所得:或五、数形结合数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。例6、若不等式在内恒成立,求实数的取值范围。解:由题意知:在内恒成立,在同一坐标系内,分别作出函数和观察两函数图象,当时,若函数的图象显然在函数图象的下方,所以不成立;当时,由图可知,的图象必须过点或在这个点的上方,则, 综上得:上面介绍了含参不等式中恒成立问题几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。指数不等式的解法是利用指数函数的性质化为同解的代数不等式例1:解不等式:解 (1)原不等式所以原不等式的解集为例2:解: 所以原不等式的解集为: 对数不等式的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论