全等三角形、轴对称知识框架梳理.doc_第1页
全等三角形、轴对称知识框架梳理.doc_第2页
全等三角形、轴对称知识框架梳理.doc_第3页
全等三角形、轴对称知识框架梳理.doc_第4页
全等三角形、轴对称知识框架梳理.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

做教育,做良心 龙文教育教师一对一讲义 学生姓名: 教师姓名: 日期: 教学目标:1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式2、能用尺规进行一些基本作图能用三角形全等和角平分线的性质进行证明。3、探索简单图形之间的轴对称关系,能够按照要求作出简单图形经过一次或两次轴对称后的图形,认识和欣赏轴对称在现实生活中的应用,能应用轴对称进行简单的图案设计。4、了解线段的垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念,探索并掌握它们的性质以及判定方法。教学重点,难点:重点:1、理解用三角形全等和角平分线的性质进行证明有关问题;2、按照要求作出简单图形经过一次或两次轴对称后的图形,认识和欣赏轴对称在现实生活中的应用;3、了解等腰三角形、等边三角形的有关概念,探索并掌握它们的性质以及判定方法。难点:1、灵活应用所学知识解决问题,精炼准确表达推理过程2、能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习兴趣。教学过程: 第十一章 全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、方法指引证明两个三角形全等的基本思路:(1)已知两边(2)已知一边一角(3)已知两角.二、角的平分线:1、定义:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。2、性质:角的平分线上的点到角的两边的距离相等.3、判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”(5)截长补短法证三角形全等。. 四、学以致用1、如图:在ABC中,C =90,AD平分 BAC,DEAB交AB于E,BC=30,BD:CD=3:2,则DE= 。4321EDCBA2、如图,已知E在AB上,1=2, 3=4,那么AC等于AD吗?为什么?3、如图,已知,EGAF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)AB=AC DE=DF BE=CF 已知:EGAF,_,_ 求证:_GFEDCBA4、如图,在RABC中,ACB=45,BAC=90,AB=AC,点D是AB的中点,AFCD于H交BC于F,BEAC交AF的延长线于E,求证:BC垂直且平分DE.第十二章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 4.轴对称与轴对称图形的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。 3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。三、用坐标表示轴对称小结: 1.在平面直角坐标系中关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等;关于原点对称的点横坐标和纵坐标互为相反数;与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_.点(x, y)关于y轴对称的点的坐标为_(-x, y)_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。四、(等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)理解:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)。五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于60度。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是60度的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。六、误区警示1注意分类讨论思想,如等腰三角形的周长为20,有一边为8,这时就必须讨论所给的这条边是腰还是底。再比如涉及三角形的高时,通常需要考虑高在三角形的外部还是内部。2应用“三线合一”性质作辅助线时,所作的辅助线不能同时满足两线的性质(如过点A作EFBC,并使EF平分BC)。3不要认为:有一个角等于300,那么它所对的边就一定等于另一条边的一半,前提条件是在直角三角形中。七、课堂探究FEDCBA、如图, DEF =36,AB=BC=CD=DE=EF,求A、如图所示,AD是ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连结AF求证:BAF=ACF3、如图所示,F、C是线段BE上的两点, A、D分别在线段QC、RF上, AB=DE,BF=CE,B=E,PQRFEDCBAQRBE求证:PQR是等腰三角形拓展知识关于三角形的相关知识归纳:1三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:(1) AD平分BACBAD=CAD(2) BAD=CADAD是角平分线2三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)几何表达式举例:(1) AD是三角形的中线 BD = CD (2) BD = CDAD是三角形的中线3三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)几何表达式举例:(1) AD是ABC的高ADB=90(2) ADB=90AD是ABC的高4三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)几何表达式举例:(1) AB+BCAC(2) AB-BCAC5等腰三角形的定义:有两条边相等的三角形叫做等腰三角形. (如图)几何表达式举例:(1) ABC是等腰三角形 AB = AC (2) AB = AC ABC是等腰三角形6等边三角形的定义:有三条边相等的三角形叫做等边三角形. (如图)几何表达式举例:(1)ABC是等边三角形AB=BC=AC(2) AB=BC=ACABC是等边三角形7三角形的内角和定理及推论:(1)三角形的内角和180;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)几何表达式举例:(1) A+B+C=180(2) C=90A+B=90(3) ACD=A+B(4) ACD A8直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图)几何表达式举例:(1) C=90ABC是直角三角形(2) ABC是直角三角形C=909等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形.(如图)几何表达式举例:(1) C=90 CA=CBABC是等腰直角三角形(2) ABC是等腰直角三角形C=90 CA=CB10全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等.(如图)几何表达式举例:(1) ABCEFG AB = EF (2) ABCEFGA=E 11全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”. (如图) (1)(2) (3)几何表达式举例:(1) AB = EF B=F又 BC = FGABCEFG(2) (3)在RtABC和RtEFG中 AB=EF又 AC = EGRtABCRtEFG12角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)几何表达式举例:(1)OC平分AOB又CDOA CEOB CD = CE (2) CDOA CEOB又CD = CEOC是角平分线13线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)几何表达式举例:(1) EF垂直平分ABEFAB OA=OB(2) EFAB OA=OBEF是AB的垂直平分线、14线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)几何表达式举例:(1) MN是线段AB的垂直平分线 PA = PB (2) PA = PB点P在线段AB的垂直平分线上15等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60.(如图) (1) (2) (3)几何表达式举例:(1) AB = ACB=C (2) AB = AC又BAD=CADBD = CDADBC(3) ABC是等边三角形 A=B=C =6016等腰三角形的判定定理及推论:(1)如果一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论