【教学设计】《一元二次方程根与系数的关系》(冀教).docx_第1页
【教学设计】《一元二次方程根与系数的关系》(冀教).docx_第2页
【教学设计】《一元二次方程根与系数的关系》(冀教).docx_第3页
【教学设计】《一元二次方程根与系数的关系》(冀教).docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程根与系数的关系 教材分析本节是对于一元二次方程的实际探究,对于方程能够从这里有更好的认识,对于自己对于问题的理解,起到重要的作用。 教学目标1掌握一元二次方程的根与系数的关系并会初步应用2培养学生分析、观察、归纳的能力和推理论证的能力3渗透由特殊到一般,再由一般到特殊的认识事物的规律4培养学生去发现规律的积极性及勇于探索的精神 教学重难点【教学重点】根与系数的关系及其推导【教学难点】正确理解根与系数的关系一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系 课前准备 多媒体课件 教学过程1、 复习提问一元一次方程的概念。2、 导入新课1已知方程x2ax3a0的一个根是6,则求a及另一个根的值2由上题可知一元二次方程的系数与根有着密切的关系其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3由求根公式可知,一元二次方程ax2bxc0(a0)的两根为x1,x2.观察两式右边,分母相同,分子是b与b.两根之间通过什么计算才能得到更简洁的关系?三、讲授新课解下列方程,并填写表格:方程x1x2x1x2x1x2x22x0x23x40x25x60观察上面的表格,你能得到什么结论?(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2bxc0(a0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程x1x2x1x2x1x22x27x403x22x505x217x60小结:根与系数关系:(1)关于x的方程x2pxq0(p,q为常数,p24q0)的两根x1,x2与系数p,q的关系是:x1x2p,x1x2q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零)(2)形如ax2bxc0(a0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2bxc0(a0)a0,x2x0x1x2,x1x2(可以利用求根公式给出证明)例1配方法解方程2x2-x-2=0应把它先变形为( ) A(x-)2= B(x-)2=0 C(x-)2= D(x-)2=例2下列方程中,一定有实数解的是( ) Ax2+1=0 B(2x+1)2=0 C(2x+1)2+3=0 D(x-a)2=a四、随堂训练例1已知一元二次方程的两个根是1和2,请你写出一个符合条件的方程(你有几种方法?)例2已知方程2x2kx90的一个根是3,求另一根及k的值变式一:已知方程x22kx90的两根互为相反数,求k;变式二:已知方程2x25xk0的两根互为倒数,求k.五、小结1根与系数的关系2根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零六、作业:1不解方程,写出下列方程的两根和与两根积(1)x25x30(2)9x2x2(3)6x23x20(4)3x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论