数学北师大版八年级上册新北师大版数学八上教学设计1.3. 勾股定理的应用.doc_第1页
数学北师大版八年级上册新北师大版数学八上教学设计1.3. 勾股定理的应用.doc_第2页
数学北师大版八年级上册新北师大版数学八上教学设计1.3. 勾股定理的应用.doc_第3页
数学北师大版八年级上册新北师大版数学八上教学设计1.3. 勾股定理的应用.doc_第4页
数学北师大版八年级上册新北师大版数学八上教学设计1.3. 勾股定理的应用.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 勾股定理1.3. 勾股定理的应用圆柱体中的“最短距离”问题文山市平坝中学 张跃志一、学生知识状况分析 本节将利用勾股定理及其逆定理解决一些具体的实际问题圆柱体中的“最短距离”问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础二、教学任务分析 本节是义务教育课程标准北师大版实验教科书八年级(上)第一章勾股定理第节具体内容是运用勾股定理及其逆定理解决简单的实际问题圆柱体中的“最短距离”问题当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力本节课的教学目标是: 1.通过观察图形,探索图形间的关系,发展学生的空间观念 2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想 3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点四、教法学法 1教学方法引导探究归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程 2课前准备教具:教材、电脑、多媒体课件学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了五个环节第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:交流小结;第五环节:布置作业第一环节:情境引入内容:情景1:复习(多媒体展示):提出问题:1.从二教楼到综合楼怎样走最近?2.求圆柱体的侧面积?展示学习目标情景2:新课探究如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景的创设引入新课,激发学生探究热情效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础第二环节:合作探究内容:学生分为人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念效果:学生汇总了四种方案:AAA (1) (2) (3) (4)学生很容易算出:情形(1)中AB的路线长为:,情形(2)中AB的路线长为: 所以情形(1)的路线比情形(2)要短学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA剪开圆柱得到矩形,情形(3)AB是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可如图:(1)中AB的路线长为:(2)中AB的路线长为:AB(3)中AB的路线长为:AO+OBAB(4)中AB的路线长为:AB得出结论:利用展开图中两点之间,线段最短解决问题在这个环节中,可让学生沿母线剪开圆柱体,具体观察接下来后提问:怎样计算AB?在RtAAB中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,取3,则注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能但这一拓展使学生无法去论证最短路径究竟是哪条因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:(1) 转化:实际问题转化成数学问题(2)展开:立体图形展开成平面图形(3)构建:构建直角三角形(4)应用:应用勾股定理解决实际问题第三环节:小试牛刀内容:有一个圆柱形油罐,要以A点环绕油罐建梯子,正好A点的正上方BB点,问梯子最短需多少米?(已知:油罐的底面半径是2 m,高AB是5 m,取3)BBAAA解:圆柱形油罐的展开图如图,则AB为梯子的最短距离.AA=12, AB=5,所以AB =13.2. 有一只蚂蚁要从一个圆柱形玻璃杯的点A爬到点B处,如图,已知杯子高8cm,点B距杯口3cm(杯口朝上),杯子底面半径为2cm,蚂蚁从点A爬到点B的最短距离是多少?(取3)C12cmAC4cmD3cmB5cm解:在直角三角形ABC中,则AC=24厘米,BC=5厘米.根据勾股定理得12+5=169=13 所以AB=13即蚂蚁从点A爬到点B的最短距离为13米,3、 如下图的长方体,长方体底面长为2,宽为1,高为4,蚂蚁从A点沿长方体表面爬到E点有多少种爬行可能?那种爬行路径的距离最短?是多少?ABCFGE412 前(后)右(左)BAGFHE241前(后)上(下)DAGHFE241左(右)上(下)解:长方体侧面展开图一共有三种情况,如上图,其距离分别是: 第一种: 第二种: 第三种:总结:四棱柱给出的长、宽、高三个数据,把较小的两个数据的和作为一条直角边的长,最大的数据作为另一条直角边的长,这时斜边的长即为最短距离。第四环节:交流小结内容:师生相互交流总结:1解决实际问题的方法是建立数学模型求解2在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史效果:学生畅所欲言自己的切身感受与实际收获,总结出在寻求曲面最短路径时,往往考虑其展开图,利用两点之间,线段最短进行求解并赞叹我国古代数学的成就第五环节:布置作业:课本习题14第1,2,3题2如图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他们把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他们把旗杆的高度和绳子的长度计算出来吗?请你与同伴交流并回答用的是什么方法. 图(2)图(1)解:设旗杆高AC=x米,则AB=(x+1)米,BC=5米.根据勾股定理得x+5=(x+1) x=12,所以AB=x+1=13 即旗杆的高度为12米, 绳子的长度为13米.六、教学设计反思:本节从生动有趣的问题情景出发,通过学生自主探究,运用勾股定理及其逆定理解决简单的实际问题,既巩固了基本知识点,又在将实际问题抽象成几何图形过程中,学会观察,提高分析能力,渗透数学建摸思想在设计中,我注重以下两点: 1要充分利用好教材提供的素材:“蚂蚁怎么走最近”是一个生动有趣的问题,让学生充满了探究的欲望,这个问题体现了二、三维图形的转化,对发展学生的空间观念很有好处 2合理使用教材提供的练习:本节课通过“小试牛刀”和“举一反三”把教材中的练习重组,使练习有梯度,既巩固了基本知识点,又训练了学生的应用能力第一个作业让学生深入理解和应用勾股定理及逆定理 3突破重点、突破难点的策略:在教学过程中教师应通过情景创设,激发兴趣,鼓励引导学生经历探索过程,得出结论,从而发展学生的数学应用能力,提高学生解决实际问题的能力 4分层教学:根据本班学生实际情况可在教学过程中选择:基础训练“小试

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论