高中数学一轮复习微专题第⑤季导数与定积分:第5节导数与函数的极值.doc_第1页
高中数学一轮复习微专题第⑤季导数与定积分:第5节导数与函数的极值.doc_第2页
高中数学一轮复习微专题第⑤季导数与定积分:第5节导数与函数的极值.doc_第3页
高中数学一轮复习微专题第⑤季导数与定积分:第5节导数与函数的极值.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5节 导数与函数的极值【基础知识】1.函数的极值(1)函数的极小值:函数yf(x)在点xa的函数值f(a)比它在点xa附近其它点的函数值都小,f(a)0,而且在点xa附近的左侧f(x)0,右侧f(x)0,则点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(2)函数的极大值:函数yf(x)在点xb的函数值f(b)比它在点xb附近的其他点的函数值都大,f(b)0,而且在点xb附近的左侧f(x)0,右侧f(x)0,则点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值极小值点,极大值点统称为极值点,极大值和极小值统称为极值【规律技巧】1.求函数f(x)极值的步骤:(1)确定函数的定义域;(2)求导数f(x);(3)解方程f(x)0,求出函数定义域内的所有根;(4)列表检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值【典例讲解】例1已知函数f(x)exax(a为常数)的图象与y轴交于点A,曲线yf(x)在点A处的切线斜率为1.(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x20时,f(x)()A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大值也无极小值【答案】D【练习巩固】1、对二次函数(为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A是的零点 B1是的极值点C3是的极值 D. 点在曲线上【答案】A2函数f(x)x33x21在x_处取得极小值【解析】f(x)3x26x,令f(x)0,得x10,x22,当x(,0)时,f(x)0,当x(0,2)时,f(x)0,显然当x2时f(x)取极小值【答案】23已知函数yx3bx2(2b3)x2b在R上不是单调减函数,则b的取值范围是_【解析】yx22bx(2b3),要使原函数在R上单调递减,应有y0恒成立,4b24(2b3)4(b22b3)0,1b3,故使该函数在R上不是单调减函数的b的取值范围是b3.【答案】(,1)(3,)4设函数f(x)ax33x2,(aR),且x2是yf(x)的极值点,求函数g(x)exf(x)的单调区间【解析】f(x)3ax26x3x(ax2)因为x2是函数yf(x)的极值点所以f(2)0,即6(2a2)0,因此a1,经验证,当a1时,x2是函数f(x)的极值点,所以g(x)ex(x33x2),g(x)ex(x33x23x26x)ex(x36x)x(x)(x)ex.因为ex0,所以yg(x)的单调增区间是(,0)和(,);单调减区间是(,)和(0,)5已知函数f(x)x3ax1(1)若f(x)在(,)上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由6设函数f(x)ln x在内有极值(1)求实数a的取值范围;(2)若x1(0,1),x2(1,)求证:f(x2)f(x1)e2.注:e是自然对数的底数【解析】(1)解易知函数f(x)的定义域为(0,1)(1,),由函数f(x)在内有极值,可知方程f(x)0在内有解,令g(x)x2(a2)x1(x)(x)不妨设0e,又g(0)10,所以g1e2.(2)证明由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论