




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24 1 3弧 弦 圆心角 圆的对称性 轴对称性 复习 圆是中心对称图形吗 它的对称中心在哪里 思考 圆是中心对称图形 它的对称中心是圆心 将圆绕圆心任意旋转 圆具有旋转不变性 导入 N O 把圆O的半径ON绕圆心O旋转任意一个角度 N O N 把圆O的半径ON绕圆心O旋转任意一个角度 N O N 把圆O的半径ON绕圆心O旋转任意一个角度 N O N 把圆O的半径ON绕圆心O旋转任意一个角度 N O N 定理 把圆绕圆心旋转任意一个角度后 仍与原来的圆重合 所以圆具有旋转不变性 把圆O的半径ON绕圆心O旋转任意一个角度 由此可以看出 点N 仍落在圆上 圆心角 我们把顶点在圆心的角叫做圆心角 O 如图中所示 AOB是一个圆心角 概念 判别下列各图中的角是不是圆心角 并说明理由 议一议 如图 将圆心角 AOB绕圆心O旋转到 A OB 的位置 你能发现哪些等量关系 为什么 根据旋转的性质 将圆心角 AOB绕圆心O旋转到 A OB 的位置时 显然 AOB A OB 射线OA与OA 重合 OB与OB 重合 而同圆的半径相等 OA OA OB OB 从而点A与A 重合 B与B 重合 O A B O A B A B A B 探究 同样 还可以得到 在同圆或等圆中 如果两条弧相等 那么它们所对的圆心角 所对的弦 在同圆或等圆中 如果两条弦相等 那么他们所对的圆心角 所对的弧 这样 我们就得到下面的定理 相等 相等 相等 相等 定理 O A B 下面的说法正确吗 为什么 如图 因为 根据圆心角 弧 弦的关系定理可知 想一想 同圆或等圆 如图 AB CD是 O的两条弦 1 如果AB CD 那么 2 如果AB CD 那么 3 如果 AOB COD 那么 试一试 4 如果AB CD OE AB于E OF CD于F OE与OF相等吗 为什么 试一试 相等 AB CD AOB COD 又 AO CO BO DO AOB COD 又 OE OF是AB与CD对应边上的高 OE OF 圆心到弦的距离叫做这条弦的弦心距 在同圆或等圆中 相等的圆心角所对的弦的弦心距相等 两条弦心距 把圆心角等分成360份 则每一份的圆心角是1 同时整个圆也被分成了360份 则每一份这样的弧叫做1 的弧 这样 1 的圆心角对着1 的弧 1 的弧对着1 的圆心角 n 的圆心角对着n 的弧 n 的弧对着n 的圆心角 性质 弧的度数和它所对圆心角的度数相等 小结 2 所对的圆心角和所对的圆心角相等 在两个圆中 分别有 若的度数和相等 则有 1 和相等 判断 结束 试一试 点此继续 知识延伸 例题讲解 证明 AB AC ABC是等腰三角形 又 ACB 60 ABC是等边三角形 AOB BOC AOC 例题讲解 2 AOB COB AOC的度数分别为 例题讲解 3 若 O的半径为r 则等边ABC三角形的边长为 例题讲解 4 延长AO 分别交BC于点P 交弧BC于点D 连结BD CD 试判断四边形BDCO是哪一种特殊四边形 并说明理由 例2如图 AB是 O的直径 COD 35 求 AOE的度数 解 O1和 O2是等圆 AD O1O2 正确的是 A AB CD且AB CDB AB CD且AB CDC AB CD且AB CDD 以上都不对 O1 O2 A B C D 例3 如图 已知AD BC 求证AB CD 例4 如图 CD是 O的弦 AC BD OA OB分别交CD于E F 求证 OEF是等腰三角形 O A C D E F B 例5 变式 如图 在圆O中 已知AC BD 试说明 1 OC OD 2 AE BF 如图 已知点O是 EPF的平分线上一点 P点在圆外 以O为圆心的圆与 EPF的两边分别相交于A B和C D 求证 AB CD 分析 联想到角平分线的性质 作弦心距OM ON 证明 作 垂足分别为M N P A B E C D F 要证AB CD 只需证OM ON O 例6 如图 P点在圆上 PB PD吗 P点在圆内 AB CD吗 P B E D F O 思考 例7 如图 O与 ABC三边均相交 在三边上截得的线段DE FG HK 1 若 A 50 则 BOC 2 若 A 则 BOC 例8 A B C D是 O上四点 且弧AB 2弧CD 则弦AB与弦CD的2倍的关系是 A AB 2CDB AB 2CDC AB 2CDD 不能确定 例9 如图 M N分别为 O的非直径弦AB CD的中点 AB CD 求证 AMN CNM 例10 如图 已知 ABC的三个顶点都在 O上 CN为 O的直径 CM AB 点F为弧AB的中点 求证 1 CF平分 NCM 2 AM NB C B M F N 例11 如图 A B C是 O上三个点 连接弧AB和弧AC的中点D E的弦交弦AB AC于F G 求证 AF AG A D E B C F G O 1相等的圆心角所对的弧相等 2 如图 O中 AB CD 则 试一试你的能力 3 如图 在 O中 AC BD 求 2的度数 4 如图 在 O中 AB AC B 70 求 C度数 5 如图 在三个等圆上各有一条劣弧弧AB 弧CD 弧EF 如果弧AB 弧CD 弧EF 那么AB CD与EF的大小关系是 A AB CD EFB AB CD EFC AB CD EFD 不确定 6 如图 在 ABC中 ABC 900 C 400 求弧AD的度数 弧的度数就是该弧所对圆心角的度数 7 在圆中 若弧AB的度数是900 那么弧AB的长是圆周长的 8 若弦AB等于 O的半径 则弦所对的圆心角度数是 9 如图 AB是 O的直径 BC CD DA是 O的弦 且BC CD DA 求弧BD的度数 10 如图所示 在 O中 AC是直径 弦AB CD 求证 AOD BOC 11 如图所示 AB CD是 O的直径 DF BE是弦 且DF BE 求证 B D 12 如图所示 已知以平行四边形ABCD的顶点A为圆心 以AB长为半径作圆交AD于点F 交BC于点G BA的延长线交 A于点E 求证 弧EF 弧FG 13 如图所示 已知 AOB 90 C D是弧AB的三等分点 AB分别交OC OD于点E F 求证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春季中国光大银行济南分行校园招聘(滨州有岗)模拟试卷及答案详解(名校卷)
- 2025年江苏常州经济开发区社会保障和卫生健康局下属事业单位公开招聘卫技人员14人模拟试卷及参考答案详解一套
- 2025年蒲江县公开招聘事业单位工作人员(14人)模拟试卷附答案详解(完整版)
- 2025北京市通州区马驹桥镇招考20人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025中煤陕西能源化工集团有限公司面向社会公开招聘40人笔试题库历年考点版附带答案详解
- 2025中国融通集团融通科研院春季专项招聘笔试题库历年考点版附带答案详解
- 2025铜型材采购协议合同
- 2025吉林省城市规划技术服务委托合同书
- 电信租机协议书
- 养猪合同协议书
- 医学细胞生物学细胞的内膜系统
- 《孕前和孕期保健》课件
- 肾病科糖尿病肾病(DKD)与终末期肾病血液透析(ESRD-HD)单病种质量控制统计表
- 空间设计教学大纲 室内设计教学大纲(五篇)
- 促单技巧及话术大全
- 车辆司法鉴定申请书
- 塑料原料名称中英文对照表
- 二年级应用题大全800题二年级上册数学乘法应用题
- 第十四杂环化合物
- GB/T 5454-1997纺织品燃烧性能试验氧指数法
- GB/T 11186.2-1989涂膜颜色的测量方法第二部分:颜色测量
评论
0/150
提交评论