 
         
         
         
        
            全文预览已结束            
        
        下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
            一 函数的概念设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作函数的三要素:定义域、值域和对应法则只有定义域相同,且对应法则也相同的两个函数才是同一函数求函数的定义域时,一般遵循以下原则:是整式时,定义域是全体实数是分式函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1中,零(负)指数幂的底数不能为零二 函数的表示法函数的表示方法:表示函数的方法,常用的有解析法、列表法、图象法三种映射的概念设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作 给定一个集合到集合的映射,且如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象三 单调性与最大(小)值1函数的单调性定义及判定方法函数的性 质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间上是减函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数2最大(小)值定义 一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数 的最大值,记作(2) 一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得那么,我们称是函数的最小值,记作:min = m四 函数的奇偶性 定义及判定方法函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称) 函数为奇函数,且在处有定义,则 奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反偶函数关于y(即x=0)轴对称,偶函数有关系式 奇函数关于(0,0)对称,奇函数有关系式五 函数周期性、对称性1周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。nT( nZ,n0 ) 2 函数满足如下关系系,则;(x+T)=( x-T )3、函数f(x)满足f(xa)=f(xb),则函数f(x)的周期是T=|(xa)(xb)|=|ab|六 两个函数的图象对称性1、 与关于X轴对称。2、 与关于Y轴对称。3 函数与图象关于原点对称4 与关于直线对称。七 函数零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数 的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法:求函数的零点: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数),方程有两不等实根,二次函数的图象与轴有两个交        
    温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 31379.2-2025平板显示器偏光片测试方法第2部分:光学性能
- 2025全日制劳动合同模板(正式版)
- 银行运营部介绍
- 全国大学生职业规划大赛《精细化工技术》专业生涯发展展示【高职(专科)】
- 2025版近视眼常见症状及护理指南培训
- 胃溃疡合并出血护理护士培训计划
- 2025版贫血的表现和护理措施
- 院校门店环境介绍
- 酒店会议室介绍
- 2025版血液科疾病常见症状及护理方法探讨
- 税务局国考行测题库及答案详解【名师系列】
- 2025年中小学教师职称评定答辩题(附答案)
- 二手车买卖协议范本下载5篇
- 2025-2026学年西师大版(2024)小学数学二年级上册(全册)教学设计(附教材目录P234)
- 2025昭通市盐津县公安局警务辅助人员招聘(14人)备考考试题库附答案解析
- 自动扶梯施工方案编制
- 国开2025年《行政领导学》形考作业1-4答案
- 造口袋在临床工作中的应用
- 中风病中医症候量表
- 数学地质系列______10判别分析
- 《函数的奇偶性》公开课教案
 
            
评论
0/150
提交评论