




已阅读5页,还剩95页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2004年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =_,b =_.(2) 设函数f (u , v)由关系式f xg(y) , y = x + g(y)确定,其中函数g(y)可微,且g(y) 0,则.(3) 设,则.(4) 二次型的秩为 .(5) 设随机变量服从参数为的指数分布, 则_.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则 .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数在下列哪个区间内有界.(A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). (8) 设f (x)在(- , +)内有定义,且, ,则(A) x = 0必是g(x)的第一类间断点.(B) x = 0必是g(x)的第二类间断点.(C) x = 0必是g(x)的连续点.(D) g(x)在点x = 0处的连续性与a的取值有关. (9) 设f (x) = |x(1 - x)|,则(A) x = 0是f (x)的极值点,但(0 , 0)不是曲线y = f (x)的拐点.(B) x = 0不是f (x)的极值点,但(0 , 0)是曲线y = f (x)的拐点.(C) x = 0是f (x)的极值点,且(0 , 0)是曲线y = f (x)的拐点.(D) x = 0不是f (x)的极值点,(0 , 0)也不是曲线y = f (x)的拐点. (10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是(A) (1) (2).(B) (2) (3).(C) (3) (4).(D) (1) (4). (11) 设在a , b上连续,且,则下列结论中错误的是(A) 至少存在一点,使得 f (a).(B) 至少存在一点,使得 f (b).(C) 至少存在一点,使得.(D) 至少存在一点,使得= 0. (12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, .(C) 当时, . (D) 当时, . (13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. (14) 设随机变量服从正态分布, 对给定的, 数满足, 若, 则等于(A) . (B) . (C) . (D) . 三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求.(16) (本题满分8分)求,其中D是由圆和所围成的平面区域(如图).(17) (本题满分8分)设f (x) , g(x)在a , b上连续,且满足,x a , b),.证明:.(18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P,其中价格P (0 , 20),Q为需求量.(I) 求需求量对价格的弹性( 0);(II) 推导(其中R为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.(19) (本题满分9分)设级数的和函数为S(x). 求:(I) S(x)所满足的一阶微分方程;(II) S(x)的表达式.(20)(本题满分13分) 设, , , , 试讨论当为何值时, () 不能由线性表示;() 可由唯一地线性表示, 并求出表示式; () 可由线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设阶矩阵 .() 求的特征值和特征向量;() 求可逆矩阵, 使得为对角矩阵.(22) (本题满分13分) 设,为两个随机事件,且, , , 令 求() 二维随机变量的概率分布;() 与的相关系数 ; () 的概率分布. (23) (本题满分13分) 设随机变量的分布函数为 其中参数. 设为来自总体的简单随机样本,() 当时, 求未知参数的矩估计量;() 当时, 求未知参数的最大似然估计量; () 当时, 求未知参数的最大似然估计量. 2004年考研数学(三)真题解析一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若,则a =,b =.【分析】本题属于已知极限求参数的反问题.【详解】因为,且,所以,得a = 1. 极限化为,得b = -4.因此,a = 1,b = -4.【评注】一般地,已知 A,(1) 若g(x) 0,则f (x) 0;(2) 若f (x) 0,且A 0,则g(x) 0.(2) 设函数f (u , v)由关系式f xg(y) , y = x + g(y)确定,其中函数g(y)可微,且g(y) 0,则.【分析】令u = xg(y),v = y,可得到f (u , v)的表达式,再求偏导数即可.【详解】令u = xg(y),v = y,则f (u , v) =,所以,.(3) 设,则.【分析】本题属于求分段函数的定积分,先换元:x - 1 = t,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t,.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为于是二次型的矩阵为 ,由初等变换得 ,从而 , 即二次型的秩为2. 【详解二】因为, 其中 .所以二次型的秩为2. (5) 设随机变量服从参数为的指数分布, 则 .【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于, 的分布函数为故.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则 .【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 , ,故应填 .【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7) 函数在下列哪个区间内有界.(A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). A 【分析】如f (x)在(a , b)内连续,且极限与存在,则函数f (x)在(a , b)内有界.【详解】当x 0 , 1 , 2时,f (x)连续,而,所以,函数f (x)在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x)在闭区间a , b上连续,则f (x)在闭区间a , b上有界;如函数f (x)在开区间(a , b)内连续,且极限与存在,则函数f (x)在开区间(a , b)内有界. (8) 设f (x)在(- , +)内有定义,且,则(A) x = 0必是g(x)的第一类间断点.(B) x = 0必是g(x)的第二类间断点.(C) x = 0必是g(x)的连续点.(D) g(x)在点x = 0处的连续性与a的取值有关. D 【分析】考查极限是否存在,如存在,是否等于g(0)即可,通过换元,可将极限转化为.【详解】因为= a(令),又g(0) = 0,所以,当a = 0时,即g(x)在点x = 0处连续,当a 0时,即x = 0是g(x)的第一类间断点,因此,g(x)在点x = 0处的连续性与a的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9) 设f (x) = |x(1 - x)|,则(A) x = 0是f (x)的极值点,但(0 , 0)不是曲线y = f (x)的拐点.(B) x = 0不是f (x)的极值点,但(0 , 0)是曲线y = f (x)的拐点.(C) x = 0是f (x)的极值点,且(0 , 0)是曲线y = f (x)的拐点.(D) x = 0不是f (x)的极值点,(0 , 0)也不是曲线y = f (x)的拐点. C 【分析】由于f (x)在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x)在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 d 0,而f (0) = 0,所以x = 0是f (x)的极小值点.显然,x = 0是f (x)的不可导点. 当x (-d , 0)时,f (x) = -x(1 - x),当x (0 , d)时,f (x) = x(1 - x),所以(0 , 0)是曲线y = f (x)的拐点.故选(C).【评注】对于极值情况,也可考查f (x)在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散.(4) 若收敛,则,都收敛.则以上命题中正确的是(A) (1) (2).(B) (2) (3).(C) (3) (4).(D) (1) (4). B 【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令,显然,分散,而收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由可得到不趋向于零(n ),所以发散.(4)是错误的,如令,显然,都发散,而收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型. (11) 设在a , b上连续,且,则下列结论中错误的是(A) 至少存在一点,使得 f (a).(B) 至少存在一点,使得 f (b).(C) 至少存在一点,使得.(D) 至少存在一点,使得= 0. D 【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知在a , b上连续,且,则由介值定理,至少存在一点,使得;另外,由极限的保号性,至少存在一点使得,即. 同理,至少存在一点使得. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度.(12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, .(C) 当时, . (D) 当时, . D 【分析】 利用矩阵与等价的充要条件: 立即可得.【详解】因为当时, , 又 与等价, 故, 即, 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系(A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. B 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩.【详解】 因为基础解系含向量的个数=, 而且根据已知条件 于是等于或. 又有互不相等的解, 即解不惟一, 故. 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵与其伴随矩阵的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量服从正态分布, 对给定的, 数满足, 若, 则等于(A) . (B) . (C) . (D) . C 【分析】 利用标准正态分布密度曲线的对称性和几何意义即得.【详解】 由, 以及标准正态分布密度曲线的对称性可得. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(15) (本题满分8分)求.【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】=.【评注】本题属于求未定式极限的基本题型,对于“”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分)求,其中D是由圆和所围成的平面区域(如图).【分析】首先,将积分区域D分为大圆减去小圆,再利用对称性与极坐标计算即可.【详解】令,由对称性,.所以,.【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分)设f (x) , g(x)在a , b上连续,且满足,x a , b),.证明:.【分析】令F(x) = f (x) - g(x),将积分不等式转化为函数不等式即可.【详解】令F(x) = f (x) - g(x),由题设G(x) 0,x a , b,G(a) = G(b) = 0,.从而 ,由于 G(x) 0,x a , b,故有,即 .因此 .【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18) (本题满分9分)设某商品的需求函数为Q = 100 - 5P,其中价格P (0 , 20),Q为需求量.(I) 求需求量对价格的弹性( 0);(II) 推导(其中R为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于 0,所以;由Q = PQ及可推导.【详解】(I) .(II) 由R = PQ,得 .又由,得P = 10.当10 P 1,于是,故当10 P 0时,需求量对价格的弹性公式为.利用需求弹性分析收益的变化情况有以下四个常用的公式: ,(收益对价格的弹性).(19) (本题满分9分)设级数的和函数为S(x). 求:(I) S(x)所满足的一阶微分方程;(II) S(x)的表达式.【分析】对S(x)进行求导,可得到S(x)所满足的一阶微分方程,解方程可得S(x)的表达式.【详解】(I) ,易见 S(0) = 0,.因此S(x)是初值问题的解.(II) 方程的通解为 ,由初始条件y(0) = 0,得C = 1.故,因此和函数.【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题.(20)(本题满分13分) 设, , , , 试讨论当为何值时, () 不能由线性表示;() 可由唯一地线性表示, 并求出表示式; () 可由线性表示, 但表示式不唯一, 并求出表示式. 【分析】将可否由线性表示的问题转化为线性方程组是否有解的问题即易求解.【详解】 设有数使得 . (*)记. 对矩阵施以初等行变换, 有.() 当时, 有 .可知.故方程组(*)无解, 不能由线性表示.() 当, 且时, 有, 方程组(*)有唯一解: , , 此时可由唯一地线性表示, 其表示式为 () 当时, 对矩阵施以初等行变换, 有,, 方程组(*)有无穷多解,其全部解为 , , , 其中为任意常数可由线性表示, 但表示式不唯一,其表示式为 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设阶矩阵 .() 求的特征值和特征向量;() 求可逆矩阵, 使得为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程和齐次线性方程组来解决.【详解】() 当时, ,得的特征值为,对,解得,所以的属于的全部特征向量为(为任意不为零的常数)对, 得基础解系为,故的属于的全部特征向量为(是不全为零的常数)当时,,特征值为,任意非零列向量均为特征向量() 当时,有个线性无关的特征向量,令,则当时,对任意可逆矩阵, 均有 【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况.(22) (本题满分13分) 设,为两个随机事件,且, , , 令 求() 二维随机变量的概率分布;() 与的相关系数 ; () 的概率分布. 【分析】本题的关键是求出的概率分布,于是只要将二维随机变量的各取值对转化为随机事件和表示即可【详解】 () 因为 ,于是,则有,( 或),即的概率分布为: 0 1 0 1 ()方法一:因为,所以与的相关系数 方法二: X, Y的概率分布分别为 X 0 1 Y 0 1 P P 则,DY=, E(XY)=,故 ,从而 () 的可能取值为:0,1,2 ,即的概率分布为: 0 1 2 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型(23) (本题满分13分) 设随机变量的分布函数为 其中参数. 设为来自总体的简单随机样本,() 当时, 求未知参数的矩估计量;() 当时, 求未知参数的最大似然估计量; () 当时, 求未知参数的最大似然估计量. 【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.【详解】 当时, 的概率密度为 () 由于 令 , 解得 , 所以, 参数的矩估计量为 .() 对于总体的样本值, 似然函数为 当时, , 取对数得 ,对求导数,得,令,解得,于是的最大似然估计量为 ( ) 当时, 的概率密度为对于总体的样本值, 似然函数为 当时, 越大,越大, 即的最大似然估计值为,于是的最大似然估计量为 2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= .(2) 微分方程满足初始条件的特解为_.(3)设二元函数,则_.(4)设行向量组,线性相关,且,则a=_.(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=_.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. (8)设,其中,则(A) . (B).(C) . (D) . (9)设若发散,收敛,则下列结论正确的是 (A) 收敛,发散 . (B) 收敛,发散.(C) 收敛. (D) 收敛. (10)设,下列命题中正确的是(A) f(0)是极大值,是极小值. (B) f(0)是极小值,是极大值.(C) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值. (11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B)若在(0,1)内连续,则f(x)在(0,1)内有界. (C)若在(0,1)内有界,则f(x)在(0,1)内有界. (D) 若在(0,1)内有界,则在(0,1)内有界. (12)设矩阵A= 满足,其中是A的伴随矩阵,为A的转置矩阵. 若为三个相等的正数,则为(A) . (B) 3. (C) . (D) . (13)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . (14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求(16)(本题满分8分)设f(u)具有二阶连续导数,且,求(17)(本题满分9分)计算二重积分,其中.(18)(本题满分9分)求幂级数在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在0,1上的导数连续,且f(0)=0,.证明:对任何a,有 (20)(本题满分13分)已知齐次线性方程组 (i) 和(ii) 同解,求a,b, c的值.(21)(本题满分13分)设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为矩阵.(I) 计算,其中;(II)利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 求:(I) (X,Y)的边缘概率密度; (II) 的概率密度 ( III ) (23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I) 的方差; (II)与的协方差 (III)若是的无偏估计量,求常数c. 2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限= 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 =(2) 微分方程满足初始条件的特解为 .【分析】 直接积分即可.【详解】 原方程可化为 ,积分得 ,代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数,则 .【分析】 基本题型,直接套用相应的公式即可.【详解】 , ,于是 .(4)设行向量组,线性相关,且,则a= .【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有 , 得,但题设,故(5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则= .【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 =+ + =(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件与相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b的取值.【详解】 由题设,知 a+b=0.5又事件与相互独立,于是有 ,即 a=, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a取下列哪个值时,函数恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. B 【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 =,知可能极值点为x=1,x=2,且 ,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).(8)设,其中,则(A) . (B).(C) . (D) . A 【分析】 关键在于比较、与在区域上的大小.【详解】 在区域上,有,从而有 由于cosx在 上为单调减函数,于是 因此 ,故应选(A).(9)设若发散,收敛,则下列结论正确的是 (A) 收敛,发散 . (B) 收敛,发散.(C) 收敛. (D) 收敛. D 【分析】 可通过反例用排除法找到正确答案.【详解】 取,则发散,收敛,但与均发散,排除(A),(B)选项,且发散,进一步排除(C), 故应选(D). 事实上,级数的部分和数列极限存在.(10)设,下列命题中正确的是(B) f(0)是极大值,是极小值. (B) f(0)是极小值,是极大值.(C) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值. B 【分析】 先求出,再用取极值的充分条件判断即可.【详解】 ,显然 ,又 ,且,故f(0)是极小值,是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B)若在(0,1)内连续,则f(x)在(0,1)内有界. (C)若在(0,1)内有界,则f(x)在(0,1)内有界. (D) 若在(0,1)内有界,则在(0,1)内有界. C 【分析】 通过反例用排除法找到正确答案即可.【详解】 设f(x)=, 则f(x)及均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又在(0,1)内有界,但在(0,1)内无界,排除(D). 故应选(C). (12)设矩阵A= 满足,其中是A的伴随矩阵,为A的转置矩阵. 若为三个相等的正数,则为(A) . (B) 3. (C) . (D) . A 【分析】 题设与A的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.【详解】 由及,有,其中为的代数余子式,且或 而,于是,且 故正确选项为(A).(13)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) . (B) . (C) . (D) . D 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 ,则 , .由于线性无关,于是有 当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B).方法二: 由于 ,可见,线性无关的充要条件是故应选(D).(14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是(A) (B) (C)(D) C 【分析】 总体方差未知,求期望的区间估计,用统计量:【详解】 由正态总体抽样分布的性质知, 故的置信度为0.90的置信区间是,即故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求 【分析】 型未定式,一般先通分,再用罗必塔法则.【详解】 = = =(16)(本题满分8分)设f(u)具有二阶连续导数,且,求 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得 , , ,所以 =(17)(本题满分9分) 计算二重积分,其中.【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记,于是 =+=(18)(本题满分9分)求幂级数在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设 , ,则 ,由于 =, ,因此 ,又由于 ,故 所以 (19)(本题满分8分)设f(x),g(x)在0,1上的导数连续,且f(0)=0,.证明:对任何a,有 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论. 【详解】 方法一:设,则F(x)在0,1上的导数连续,并且,由于时,因此,即F(x)在0,1上单调递减.注意到 ,而 =,故F(1)=0.因此时,由此可得对任何,有 方法二: =, = 由于时,因此 , ,从而 (20)(本题满分13分)已知齐次线性方程组 (i) 和(ii) 同解,求a,b, c的值.【分析】 方程组(ii)显然有无穷多解,于是方程组(i)也有无穷多解,从而可确定a,这样先求出(i)的通解,再代入方程组(ii)确定b,c即可.【详解】 方程组(ii)的未知量个数大于方程个数,故方程组方程组(ii)有无穷多解.因为方程组(i)与(ii)同解,所以方程组(i)的系数矩阵的秩小于3.对方程组(i)的系数矩阵施以初等行变换 ,从而a=2. 此时,方程组(i)的系数矩阵可化为 ,故是方程组(i)的一个基础解系.将代入方程组(ii)可得 或当时,对方程组(ii)的系数矩阵施以初等行变换,有 ,显然此时方程组(i)与(ii)同解.当时,对方程组(ii)的系数矩阵施以初等行变换,有 ,显然此时方程组(i)与(ii)的解不相同. 综上所述,当a=2,b=1,c=2时,方程组(i)与(ii)同解.(21)(本题满分13分)设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为矩阵.(I) 计算,其中;(II)利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ,有 = = =.(II)矩阵是正定矩阵.由(I)的结果可知,矩阵D合同于矩阵又D为正定矩阵,可知矩阵M为正定矩阵.因矩阵M为对称矩阵,故为对称矩阵. 对及任意的,有 故为正定矩阵.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 求:(I) (X,Y)的边缘概率密度; (II) 的概率密度 ( III ) 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I) 关于X的边缘概率密度= =关于Y的边缘概率密度= = (II) 令,一、 当时,;一、 当时, =; 3) 当时,即分布函数为: 故所求的概率密度为:(III) (23)(本题满分13分)设为来自总体N(0,)的简单随机样本,为样本均值,记求:(I) 的方差; (II)与的协方差 (III)若是的无偏估计量,求常数c. 【分析】 先将表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求与的协方差,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计,利用其数学期望等于确定c即可.【详解】 由题设,知相互独立,且,(I) = =(II) = = = = =(III) = =,故 2006年考研数学(三)真题一、 填空题:16小题,每小题4分,共24分. 把答案填在题中横线上.(1)(2)设函数在的某邻域内可导,且,则(3)设函数可微,且,则在点(1,2)处的全微分(4)设矩阵,为2阶单位矩阵,矩阵满足,则 .(5)设随机变量相互独立,且均服从区间上的均匀分布,则_.(6)设总体的概率密度为为总体的简单随机样本,其样本方差为,则二、选择题:714小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . (8)设函数在处连续,且,则(A) 存在 (B) 存在(C) 存在 (D)存在 (9)若级数收敛,则级数(A) 收敛 . (B)收敛.(C) 收敛. (D) 收敛. (10)设非齐次线性微分方程有两个不同的解为任意常数,则该方程的通解是(). (). (). () (11)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则. (D) 若,则. (12)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关. (B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关. (D) 若线性无关,则线性无关. (13)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(). ().(). (). (14)设随机变量服从正态分布,服从正态分布,且则必有(A) (B) (C) (D) 三 、解答题:1523小题,共94分. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设,求() ;() .(16)(本题满分7分) 计算二重积分,其中是由直线所围成的平面区域.(17)(本题满分10分) 证明:当时,. (18)(本题满分8分)在坐标平面上,连续曲线过点,其上任意点处的切线斜率与直线的斜率之差等于(常数).() 求的方程;() 当与直线所围成平面图形的面积为时,确定的值.(19)(本题满分10分)求幂级数的收敛域及和函数.(20)(本题满分13分)设4维向量组 ,问为何值时线性相关?当线性相关时,求其一个极大线性无关组,并将其余向量用该极大线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场人员流量管理方案(3篇)
- 生鲜招投标方案(3篇)
- 宿舍维修保洁服务方案(3篇)
- 情志学说在中医学中的应用
- 叠墅楼顶改建方案(3篇)
- 雾化药物的介绍及应用
- 租车防盗方案(3篇)
- 贪吃蛇拓展讲解
- 景区装饰策划方案(3篇)
- 细胞分化机制
- 高职汽修专业《新能源汽车技术》说课课件
- IATF16949第五版AIAG-VDA-DFMEA案例分析
- 钢轧一厂技能提升试题库 钳工
- 十二经脉之足阳明胃经课件
- 保监发112号附件1保险法人机构公司治理自评表
- “红旗杯”竞赛总题库-6班组长个人职业素养考试题库(附答案)
- 【S烟草公司物流配送线路优化设计8500字(论文)】
- JJG 635-2011二氧化碳红外气体分析器
- 2024银行数据资产价值评估
- 骨科植入物简介演示
- 医院感染控制标准执行案例分析及改进
评论
0/150
提交评论