




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 1函数的概念 学习竞赛活动结束后 老师为竞赛获胜的同学买精装笔记本作奖品 已知每个本子两元钱 老师买了十五个 花去了三十元钱 这里本子的个数确定了 花钱的数目就唯一确定了 本子数和钱数就满足一定的关系 这个关系在数学上就叫函数关系 函数关系的例子还有很多 再如某人在不同的时期其身高可能不同也可能相同 但是某一个时间确定了 他的身高就唯一确定了 这里的时间与身高也是函数关系 那么怎样的两个变量 就叫函数关系呢 本节就从这个函数关系的定义出发 学习函数的一些基本概念 1 函数 设A B是非空的数集 如果按照某种确定的对应关系f 使对于集合A中的 在集合B中都有和它对应 那么就称f A B为从集合A到集合B的一个函数 记作 2 对于函数y f x x A 其中 x叫做自变量 x的取值范围A叫做 与x的值相对应的y值叫做 函数值的集合 f x x A 叫做函数的 任意一个实数x 唯一确定的数f x y f x x A 函数的定义域 函数值 值域 3 函数的三要素 4 区间 设a b是两个实数 且a b 1 满足不等式a x b的实数x的集合叫做闭区间 表示为 2 满足不等式a x b的实数x的集合叫做开区间 表示为 3 满足不等式a x b或a x b的实数x的集合叫做半开半闭区间 分别表示为 其中实数a与b都叫做相应区间的端点 定义域A 值域C A到C的对应关系f a b a b a b a b 4 集合 x 12 x 10 用区间表示为 答案 12 10 解 1 前者的定义域是R 后者的定义域是N 由于它们的定义域不同 故不相同 2 前者的定义域是R 后者的定义域是 x x 0 它们的定义域不同 故不相同 3 定义域相同均为非零实数 对应关系相同都是自变量取倒数后加1 故相同 温馨提示 判断由一个式子是否能确定y是x的函数的程序是 对于由式子有意义所确定的x的取值集合中任一个x的值 由式子是否可确定唯一的一个y的值与之对应 也可以看由式子解出x的解析式是否唯一 也就是 取元的任意性 取值的唯一性 即自变量在定义域内任取一个值 其函数值必须对应着唯一的值 思路分析 由题目可获取以下主要信息 已知函数的解析式 由解析式可确定函数定义域 解答本题结合相同函数的定义判断函数三要素是否一致即可 解 1 f x 的定义域是 x x 1 g x 的定义域是R 它们的定义域不同 故不相同 2 定义域相同 都是R 但是g x x 即它们的解析式不同 也就是对应关系不同 故不相同 3 定义域相同 都是R 但是它们的解析式不同 也就是对应关系不同 故不相同 4 定义域相同 都是R 解析式化简后都是y x 也就是对应关系相同 定义域和对应关系相同 那么值域必相同 这两个函数的三要素完全相同 故两函数相同 温馨提示 讨论函数问题时 要保持定义域优先的原则 判断两个函数是否相同 要先求定义域 若定义域不同 则不相同 若定义域相同 再化简函数的解析式 若解析式相同 则相同 否则不相同 思路分析 只需把自变量的值代入对应关系式即可 但要同时注意f g x 中 g x 整体充当了自变量 温馨提示 求函数值主要利用代入法 多步代入时要注意式子的化简和符号的变化 如下图所示 可表示函数y f x 的图象只能是 解析 判断一个图象是否是某一个函数的图象 应看它是否符合函数的概念 即对定义域内的任意数x 按照某种确定的对应关系 都有唯一确定的数y与它对应 对于A C中令x 0 有两个y与之对应 而B中 当x取大于0的任意值时 也都有两个y值与之对应 答案 D 2 已知f x 2x2 1 g x 3 x 求f g 1 g f 1 f g x 解 g 1 4 f g 1 f 4 2 42 1 33 f 1 2 12 1 3 g f 1 g 3 3 3 0 f x 2x2 1 g x 3 x f g x 2 3 x 2 1 2x2 12x 19 若函数f x 的定义域为 2 1 求g x f x f x 的定义域 1 对函数的概念的理解 1 y f x 表示y是x的函数 是一个整体符号 不是f与x的乘积 2 在y f x 中 x是自变量 f代表对应关系 关于自变量 同学们刚接触的时候 会因为函数的定义而认为自变量只能用x表示 其实用什么字母表示自变量都可以 关键是符合定义 x只是一个较为常用的习惯性符号 当然也可以用t等表示自变量 关于对应关系f 它是函数的本质特征 它好比是计算机中的某个 程序 当f 中括号内输入一个值时 在此 程序 作用下便可输出某个数据 即函数值 如f x 3x 5 f表示 自变量的3倍加上5 如f 4 3 4 5 17 我们也可以将 f 比喻为一个 数值加工器 当投入x的一个值后 经过 数值加工器 f 的 加工 就得到一个对应值 2 f x 与f a a A的关系f x 与f a a A的区别与联系 f a 表示当x a时的函数值 是一个值域内的值 是常量 f x 表示自变量为x的函数 表示的是变量 如f x 2x 当x 3时 f 3 2 3 6 3 函数定义域的求法 1 当函数是由解析式给出时 其定义域就是使函数解析式有意义的自变量的取值集合 具体地讲 就是考虑分母不为零 偶次根号下被开方数大于或等于零 零次幂的底数不为零 以及我们在后面学习碰到的所有有意义的限制条件都是我们应考虑的范畴 2 当函数是由实际问题给出时 其定义域不仅要考虑使其解析式有意义 还要有实际意义 3 求函数的定义域 一般是转化为解不等式或不等式组的问题 注意定义域是一个集合 其结果必须用集合或区间来表示 切莫忽视函数的定义域函数的定义域是函数的三要素之一 在学习过程中同学们往往侧重于定义域的求解 而不注重定义域的作用 常因忽视函数定义域的影响而导致错误 如求值域时因忽略定义域致错 求函数解析式时因忽略定义域而致错 乃至
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钻井操作考试试题大全及答案
- 中班健康教案:鞋带蝴蝶结
- 物业秩序安全培训
- 文科理论培训讲解
- 2025年 车险理赔考试卷库五附答案
- 肿瘤药学服务案例实践路径
- 应急预案教育培训
- 培训班月总结报告
- 重症皮肤护理常规
- 中医护理健康宣教流程
- RB/T 228-2023食品微生物定量检测的测量不确定度评估指南
- 2023年北京海淀社区工作者考试真题
- 2024年国开电大 高级财务会计 形考任务4答案
- 幼儿园中班数学活动课件:有趣的排序
- 2024年广东省惠州一中学英语七下期末达标检测试题含答案
- 2023-2024学年广西壮族自治区桂林市高二下学期期末质量检测数学试卷(含答案)
- 化妆品行业联合研发合同样本
- 畜禽生产概论-形考作业4-国开(HB)-参考资料
- 工业园区智慧能源管理平台建设方案 产业园区智慧能源管理平台建设方案
- 化工生产仿真综合实训报告
- 中华民族共同体概论课件专家版8第八讲 共奉中国与中华民族聚力发展
评论
0/150
提交评论