




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考第六章 导 数第01讲:导数的概念、几何意义及其运算常见基本初等函数的导数公式和常用导数运算公式 :; ; 法则1: 法则2: 法则3: (一)基础知识回顾:1.导数的定义:函数在处的瞬时变化率称为函数在处的导数,记作或,即如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数。称这个函数为函数在开区间内的导函数,简称导数,也可记作,即导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数在处的导数,就是导函数在处的函数值,即。2. 由导数的定义求函数的导数的一般方法是: (1).求函数的改变量;(2).求平均变化率; (3).取极限,得导数。3.导数的几何意义:函数在处的导数是曲线上点()处的切线的斜率。 因此,如果存在,则曲线在点()处的切线方程为_。 4.常用的求导公式、法则(除上面大纲所列出的以外,还有):(1)公式的特例:_; _, _.(2)法则:_; 若,则=_.(二)例题分析:例1. 已知y=,用导数的定义求y.例2.设曲线在点处的切线与直线垂直,则( D )A2BCD 例3.曲线y=在点(1,)处的切线与坐标轴围成的三角形面积为(A )(A) (B) (C) (D) 例4.已知直线为曲线在点(1,0)处的切线, 为该曲线的另一条切线,且 ()求直线的方程;()求由直线、和轴所围成的三角形的面积.第02讲: 导数在研究函数中的应用(一)基础知识回顾:1. 设函数在某个区间(a,b)内有导数,如果在这个区间内,则在这个区间内单调递增;如果在这个区间内,则是这个区间内单调递减.2. 求函数的单调区间的方法: (1)求导数; (2)解方程;(3)使不等式成立的区间就是递增区间,使成立的区间就是递减区间。3. 求函数的极值的方法:(1)求导数;(2)求方程的根(临界点);(3)如果在根附近的左侧_0,右侧_0,那么是的极大值;如果在根附近的左侧_0,右侧_0,那么是的极小值4在区间 上求函数 的最大值与最小值 的步骤:(1)求函数 在内的导数 ; (2)求函数 在内的极值 ;(3)将函数在内的各极值与端点处的函数值作比较,其中最大的一个为最大值 ,最小的一个为最小值第03讲: 导数的实际应用(一)基础知识回顾:1.结论:若函数f(x)在区间A上有唯一一个极值点,且是这个函数的极大(小)值,那么这个极值必定就是函数f(x)在区间A上的最大(小)值。2.定积分的几何意义:表示由直线_,_,_和曲线y=f(x)所围成的曲边梯形的面积。3微积分基本定理(牛顿-莱布尼兹公式):如果f(x)是区间a,b上的连续函数,并且,那么。常常把记作。高中数学专题六 数列 数列知识点总结第一部分 等差数列一 、 定义式: 二 、 通项公式: 一个数列是等差数列的等价条件:(a,b为常数),即是关于n的一次函数,因为,所以关于n的图像是一次函数图像的分点表示形式。三 、 前n项和公式: 一个数列是等差数列的另一个充要条件:(a,b为常数,a0),即是关于n的二次函数,因为,所以关于n的图像是二次函数图像的分点表示形式。四 、 性质结论1.3或4个数成等差数列求数值时应按对称性原则设置,如:3个数a-d,a,a+d; 4个数a-3d,a-d,a+d,a+3d2.与的等差中项;在等差数列中,若,则;若,则;3.若等差数列的项数为2,则;若等差数列的项数为,则,且,4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设,则有; 5.,则前(m+n为偶数)或(m+n为奇数)最大 第二部分 等比数列一 、 定义:成等比数列。二 、 通项公式:,数列an是等比数列的一个等价条件是:当且时,关于n的图像是指数函数图像的分点表示形式。三、 前n项和:;(注意对公比的讨论)四、 性质结论:1.与的等比中项(同号);2.在等比数列中,若,则;若,则;3.设, 则有第三部分 求杂数列通项公式一 构造等差数列:递推式不能构造等比时,构造等差数列。第一类:凡是出现分式递推式都可以构造等差数列来求通项公式,例如:,两边取倒数是公差为2的等差数列,从而求出。第二类:是公差为1的等差数列二。递推:即按照后项和前项的对应规律,再往前项推写对应式。例如【注: 】求通项公式的题,不能够利用构造等比或者构造等差求的时候,一般通过递推来求。第四部分 求前n项和一 、 裂项相消法:、二、 错位相减法:凡等差数列和等比数列对应项的乘积构成的数列求和时用此方法, 求:减得:从而求出。三 倒序相加法:前两种方法不行时考虑倒序相加法例:等差数列求和: 两式相加可得:高中数学专题九 概率概率部分知识点u 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )v 随机事件的概率(统计定义):一般的,如果随机事件 在次实验中发生了次,当实验的次数很大时,我们称事件A发生的概率为 w 概率必须满足三个基本要求: 对任意的一个随机事件 ,有 如果事件x 古典概率(Classical probability model): 所有基本事件有限个 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个,则每一个基本事件发生的概率都是,如果某个事件包含了其中的个等可能的基本事件,则事件发生的概率为 y 几何概型(geomegtric probability model):一般地,一个几何区域中随机地取一点,记事件“改点落在其内部的一个区域内”为事件,则事件发生的概率为 ( 这里要求的侧度不为0,其中侧度的意义由确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点: 基本事件等可性 基本事件无限多说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域内随机地取点,指的是该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。z互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件 对立事件(complementary events):两个互斥事件中必有一个发生,则称两个事件为对立事件 ,事件的对立事件 记为:独立事件的概率:,若说明: 若可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 对立事件一定是互斥事件 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 若事件是互斥事件,则有 一般地,如果 两两互斥,则有 在本教材中 指的是 中至少发生一个|例题选讲:新课标必修3概率部分知识点总结及典型例题解析u 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )v 随机事件的概率(统计定义):一般的,如果随机事件 在次实验中发生了次,当实验的次数很大时,我们称事件A发生的概率为 说明: 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 不可能事件和确定事件可以看成随机事件的极端情况 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 概率是频率的稳定值,频率是概率的近似值w 概率必须满足三个基本要求: 对任意的一个随机事件 ,有 如果事件x 古典概率(Classical probability model): 所有基本事件有限个 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型 如果一次试验的等可能的基本事件的个数为个,则每一个基本事件发生的概率都是,如果某个事件包含了其中的个等可能的基本事件,则事件发生的概率为 y 几何概型(geomegtric probability model):一般地,一个几何区域中随机地取一点,记事件“改点落在其内部的一个区域内”为事件,则事件发生的概率为 ( 这里要求的侧度不为0,其中侧度的意义由确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点: 基本事件等可性 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域内随机地取点,指的是该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。z互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件 对立事件(complementary events):两个互斥事件中必有一个发生,则称两个事件为对立事件 ,事件的对立事件 记为:独立事件的概率:,若颜老师说明: 若可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 对立事件一定是互斥事件 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 若事件是互斥事件,则有 一般地,如果 两两互斥,则有 在本教材中 指的是 中至少发生一个 在具体做题中,希望大家一定要注意书写过程,设处事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件来 ,具体的格式请参照我们课本上(新课标试验教科书-苏教版)的例题|例题选讲:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法解法1:(互斥事件)设事件 为“选取2个球至少有1个是红球” ,则其互斥事件为 意义为“选取2个球都是其它颜色球” 答:所选的2个球至少有一个是红球的概率为 .解法2:(古典概型)由题意知,所有的基本事件有种情况,设事件 为“选取2个球至少有1个是红球” ,而事件所含有的基本事件数有 所以答:所选的2个球至少有一个是红球的概率为 .解法3:(独立事件概率)不妨把其它颜色的球设为白色求,设事件 为“选取2个球至少有1个是红球” ,事件有三种可能的情况:1红1白;1白1红;2红,对应的概率分别为:, 则有 答:所选的2个球至少有一个是红球的概率为 .评价:本题重点考察我们对于概率基本知识的理解,综合所学的方法,根据自己的理解用不同的方法,但是基本的解题步骤不能少!变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?解法1:(互斥事件)设事件 为“选取3个球至少有1个是红球”,则其互斥事件为, 意义为“选取3个球都是白球”答:所选的3个球至少有一个是红球的概率为 .解法2:(古典概型)由题意知,所有的基本事件有种情况,设事件 为“选取3个球至少有1个是红球” ,而事件所含有的基本事件数有, 所以 答:所选的3个球至少有一个是红球的概率为 .解法3:(独立事件概率)设事件 为“选取3个球至少有1个是红球” ,则事件的情况如下: 红 白 白 1红2白 白 白 红 白 红 白 红 红 白 2红1白 红 白 红 白 红 红 所以 答:所选的3个球至少有一个是红球的概率为 .变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次解:设事件为“第1次抽到的是次品”, 事件为“抽到的2次中,正品、次品各一次”则 ,(或者)答:第1次抽到的是次品的概率为 ,抽到的2次中,正品、次品各一次的概率为变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来解:设事件为“甲抽到选择题而乙抽到填空题”,事件为“至少1人抽到选择题”,则为“两人都抽到填空题” (1)(2) 则 答:甲抽到选择题而乙抽到填空题的概率为 ,少1人抽到选择题的概率为 .变式训练4:一只口袋里装有5个大小形状相同的球,其中3个红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?【分析】先后抽出两个球颜色相同要么是1红1球,要么是1黄1球略解:变式训练5:设盒子中有6个球,其中4个红球,2 个白球,每次人抽一个,然后放回,若连续抽两次,则抽到1个红球1个白球的概率是多少?略解: 例2. 急救飞机向一个边长为1千米的正方形急救区域空头急救物品,在该区域内有一个长宽分别为80米和50米的水池,当急救物品落在水池及距离水池10米的范围内时,物品会失效,假设急救物品落在正方形区域内的任意一点是随机的(不考虑落在正方形区域范围之外的),求发放急救物品无效的概率?【分析】为题属于几何概型,切是平面图形,其测度用面积来衡量解:如图,设急救物品投放的所有可能的区域,即边长为1千米的正方形为区域 ,事件“发放急救物品无效”为 ,距离水池10米范围为区域 ,即为图中的阴影部分, 则有答:略颜老师说明:这种题目要看清题目意思,为了利用几何概率,题目中一般都会有落在所给的大的区域之外的不计的条件,但如果涉及到网格的现象是一般则不需要这个条件,因为超出一个网格,就会进入另外一个网格,分析是同样的变式训练1:在地上画一正方形线框,其边长等于一枚硬币的直径的2倍,向方框中投掷硬币硬币完全落在正方形外的不计,求硬币完全落在正方形内的概率?略解:变式训练2:如图,设有一个正方形网格,其中每个小正三角形的边长都是 , 现有一直径等于的硬币落在此网格上,求硬币落下后与网格有公共点的概率?【分析】因为圆的位置由圆心确定,所以要与网格线有公共点只要圆心到网格线的距离小于等于半径解:如图,正三角形内有一正三角形 ,其中 ,当圆心落在三角形 之外时,硬币与网格有公共点 答:硬币落下后与网格有公共点的概率为 0.82 .变式训练3:如图,已知矩形 的概率?略解:变式训练4:平面上画了彼此相距2a的平行线把一枚半径r a的硬币,任意的抛在这个平面上,求硬币不与任何一条平行线相碰的概率?解:设事件为“硬币不与任何一条平行线相碰”为了确定硬币的位置,有硬币的中心向距离最近的平行线作垂线,垂足为, 线段的长度的取值范围为 ,其长度就是几何概型所有的可能性构成的区域的几何测度,只有当时,硬币不与平行线相碰,其长度就是满足事件 的区域的几何测度,所以答:硬币不与任何一条平行线相碰的概率为【评价与链接】该题是几何概型的典型题目,要求我们正确确认区域和区域,理解它们的关系以及它们的测度如何来刻画。蒲丰投针问题:平面上画有等距离的一系列的平行线,平行线间距离为() ,向平面内任意的投掷一枚长为的针,求针与平行线相交的概率? 解:以表示针的中点与最近的一条平行线的距离,又以表示针与此直线的交角,如图易知 ,有这两式可以确定平面上的一个矩形,这是为了针与平行线相交,其充要条件为,有这个不等式表示的区域为图中的阴影部分,由等可能性知 如果,而关于的值,则可以用实验的方法,用频率去近似它,既: 如果 投针N 次,其中平行线相交的次数为n次,则频率为 ,于是, 注释:这也是历史上有名的问题之一,用试验的方法先用数学积分的手段结合几何概型求出概率,再用频率近似概率来建立等式,进而求出. 在历史上有好多的数学家用不同的方法来计算 ,如中国的祖冲之父子俩,还有撒豆试验,也是可以用来求 的.会面问题:甲乙两人约定在6时到7时在某地会面,并约定先到者等候另一人一刻钟,过时即可离去,求两人能会面的概率?解:设“两人能会面”为事件,以 x和y分别表示甲、乙两人到达约会地点的时间,则两人能够会面的充要条件为: 在平面上建立如图所示的坐标系,则的所有可能的结果是边长为60的正方形,而可能会面的时间由图中阴影部分所表示,由几何概型知,答:两人能会面的概率 . 课本上一道例题的变式训练:如图,在等腰直角三角形中,在斜边上任取一点,求的概率?【分析】点随机的落在线段上,故线段为区域,当点位于如图的内时,故线段即为区域解: 在上截取 ,于是 答:的概率为【变式训练】如图,在等腰直角三角形中,在内部任意作一条射线,与线段交于点,求的概率? 错解:在上截取 ,在内部任意作一条射线,满足条件的看作是在线段上任取一点,则有 【分析】这种解法看似很有道理,但仔细一看值得深思,我们再看看题目的条件已经发生了改变,虽然在线段上取点是等可能的,但过和任取得一点所作的射线是均匀的,所以不能把等可能的取点看作是等可能的取射线,在确定基本事件时一定要注意观察角度, 注意基本事件的等可能性.正解:在内的射线是均匀分布的,所以射线作在任何位置都是等可能的,在上截取 ,则 ,故满足条件的概率为评价:这就要求同学们根据不同的问题选取不同的角度,确定区域和,求出其测度,再利用几何概型来求概率.例3. 利用随机模拟法计算曲线所围成的图形的面积.【分析】在直角坐标系中作出长方形( 所围成的部分,用随机模拟法结合几何概型可以得到它的面积的近似值) 解:(1)利用计算机或者计算器生成两组0到1区间上的随机数,(2)进行平移变换:,其中分别随机点的横坐标和纵坐标(3)假如作次试验,数处落在阴影部分的点数,用几何概型公式计算阴影部分的面积 由 得出 评价:这是一种用计算机模拟试验的方法,结合几何概型 公式来计算若干函数围成的图形面积,其基本原理还是利用我们教材上介绍的撒豆试验,只是用随机数来代替豆子而已,另外要求我们理解用试验的频率来近似概率的思想. 另外这种题目到我们学习了积分,还可以有下面的解法:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?例2:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?例3:一只口袋里装有5个大小形状相同的球,其中3个红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?例4. 急救飞机向一个边长为1千米的正方形急救区域空头急救物品,在该区域内有一个长宽分别为80米和50米的水池,当急救物品落在水池及距离水池10米的范围内时,物品会失效,假设急救物品落在正方形区域内的任意一点是随机的(不考虑落在正方形区域范围之外的),求发放急救物品无效的概率?例5:如图,设有一个正方形网格,其中每个小正三角形的边长都是 , 现有一直径等于的硬币落在此网格上,求硬币落下后与网格有公共点的概率?.例6:如图,在等腰直角三角形中,在斜边上任取一点,求的概率?例7、利用随机模拟法计算曲线所围成的图形的面积. 期望、方差、正态分布期望、方差知识回顾:1数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnPp1p2pn则称 为的数学期望,简称期望2.期望的一个性质: 3.若(),则= 4.方差:5.标准差: 的算术平方根叫做随机变量的标准差,记作6.方差的性质: ; 若(),则 正态分布知识回顾:1.若总体密度曲线就是或近似地是函数的图象,则其分布叫正态分布,常记作的图象称为正态曲线三条正态曲线:;,其图象如下图所示: 观察以上三条正态曲线,得以下性质: 曲线在x轴的上方,与x轴不相交 曲线关于直线对称,且在时位于最高点 当时,曲线上升;当时,曲线下降并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 当一定时,曲线的形状由确定越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中 注意: 当时,正态总体称为标准正态总体,相应的函数表示式是相应的曲线称为标准正态曲线2. 正态总体的概率密度函数:式中是参数,分别表示总体的平均数(期望值)与标准差;当时得到标准正态分布密度函数:.3.正态曲线的性质: 曲线位于x轴上方,与x轴不相交; 曲线是单峰的,关于直线x 对称; 曲线在x处达到峰值; 曲线与x轴之间的面积为1;4. 是参数是参数的意义: 当一定时,曲线随质的变化沿x轴平移; 当一定时,曲线形状由确定:越大,曲线越“矮胖”,表示总体分布越集中;越小,曲线越“高瘦”,表示总体分布越分散。5对于,取值小于x的概率.典型例题:18.(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手被淘汰的概率;()该选手在选拔中回答问题的个数记为,求随机变量的分布列与数数期望.(注:本小题结果可用分数表示)解法一:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()的可能值为,的分布列为123解法二:()记“该选手能正确回答第轮的问题”的事件为,则,该选手被淘汰的概率()同解法一18(本小题满分12分)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响()求该射手恰好射击两次的概率;()该射手的得分记为,求随机变量的分布列及数学期望解()设该射手第次击中目标的事件为,则,()可能取的值为0,1,2,3 的分布列为01230.0080.0320.160.8.19(本小题满分12分) 某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:0123p0.10.32aa()求a的值和的数学期望;()假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。,解(1)由概率分布的性质有0.1+0.3+2a+a=1,解答a=0.2的概率分布为0123P0.10.30.40.2(2)设事件A表示“两个月内共被投诉2次”事件表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件表示“两个月内每月均被投诉12次”则由事件的独立性得故该企业在这两个月内共被消费者投诉2次的概率为0.1720.如图,A地到火车站共有路径两条和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:时间(分钟)10202030304040505060的频率的频率0现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 .20.(本小题满分13分)某银行柜台设有一个服务窗间统计结口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时果如下:从第一个顾客开始办理业务时计时.()估计第三个顾客恰好等待4分钟开始办理业务的概率;()表示至第2分钟末已办理完业务的顾客人数,求的分布列及数学期望.高中数学专题十 排列组合一基本原理1加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。2乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。二排列:从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一公式:1. 2. (1) (2) ;(3)三组合:从n个不同元素中任取m(mn)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ; 若四、二项式定理可以用以下公式表示:其中, 又有 等记法,称为二项式系数,即取的组合数目。五处理排列组合应用题 1.明确要完成的是一件什么事(审题) 有序还是无序 分步还是分类。3排列应用题:(1)穷举法(列举法) (2)、特殊元素优先考虑、特殊位置优先考虑;(3)相邻问题:捆邦法:(4)隔板法: 不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填 A22A4448. 从而应填48例2.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例3.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?.例4.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有例5从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法; (3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法分析:本题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是组合问题.高考练习16个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A40 B50 C60 D70 解析选B.2有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A36种 B48种 C72种 D96种 解析选C.3只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A6个 B9个 C18个 D36个 解析 18个4男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A2人或3人 B3人或4人 C3人 D4人 解析 2人或3人5某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A45种 B36种 C28种 D25种 解析 28种6某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A24种 B36种 C38种 D108种 解析36(种)7已知集合A5,B1,2,C1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A33 B34 C35 D36 解析选A.8由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A72 B96 C108 D144 解析 108个9如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A50种 B60种 C120种 D210种 解析选C.10安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_种(用数字作答) 解析 2400(种)11今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有_种不同的排法(用数字作答) 解析 1260(种)12将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_种(用数字作答) 解析 1 080种13要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有_种不同的种法(用数字作答) 解析 72种14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A)12种 (B)18种 (C)36种 (D)54种【解析】选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商办贷款合同范本
- 干货产品代销合同范本
- 工厂开挖基地合同范本
- 健身业务合同范本
- 家庭酒馆配送合同范本
- 工厂对接酒店合同范本
- 木材成品销售合同范本
- 私人转让商铺合同范本
- 船舶制造设备更新提质项目可行性研究报告模板-备案拿地
- 特价香蕉售卖合同范本
- 高警示药品风险管理
- 2025南方航空“梦起航”航务联合培养招聘笔试历年参考题库附带答案详解
- 2025年新乡事业单位招聘考试笔试试卷(附答案)
- 科研审计管理办法
- 《电工》国家职业技能鉴定教学计划及大纲
- 2025年标准货物出口合同范本(中英文版)
- 2025年新钢铁安全员考试题库及答案
- 2025版电子购销合同模板
- 消防安装居间合同协议书
- 2025年度江苏行政执法资格考试模拟卷及答案(题型)
- 续保团队职场管理办法
评论
0/150
提交评论