云南省高中七次学业水平考试数学试卷考点、考题分类汇编.doc_第1页
云南省高中七次学业水平考试数学试卷考点、考题分类汇编.doc_第2页
云南省高中七次学业水平考试数学试卷考点、考题分类汇编.doc_第3页
云南省高中七次学业水平考试数学试卷考点、考题分类汇编.doc_第4页
云南省高中七次学业水平考试数学试卷考点、考题分类汇编.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省高中七次学业水平考试数学试卷考点、考题分类汇编1、集合的基本运算(并集、交集)【2011.1】设集合( ) A. 1B. 3C. 1,2D. 1,2,3【2011.7】已知集合,集合,则等于( ) 【2012.1】设集合集合( )A. 5,8 B. 3,6,8 C. 5,7,8 D. 3,5,6,7,8【2012.7】已知集合,集合,则为( )A.1 B.2 C.1,2 D.-2,-1,0,1,2【2013.1】设集合,则集合为等于( )A.1,2 B.0,1,2,3,4 C.2,4 D.0,3,4【2013.7】已知全集,集合,则全集U中M的补集为( )A. 1 B.1,2 C.1,3 D.2,3【2014.1】设集合,则下列关系正确的是( )A. B. C. D. 2、已知几何体的三视图求表面积,体积【2011.1】如图所示,一个空间几何体的正视图和侧视图都是相邻两边的长分别为1和2的矩形,俯视图是一个圆,那么这个几何体的体积为( ) A. 4 B. C. D. 【2011.7】如图所示,一个空间几何体的正视图和侧图都是边长为的等边三角形,俯视图是一个圆,那么这个几何体的体积为( )正视图侧视图俯视图 【2012.1】如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积为 ( ) A. 3 B. 4 C. 5 D.【2012.7】 如图所示是一个组合体的三视图,图中的四边形均为边长为2的正方形,圆的半径为1,那么这个组合体的体积为( )A. B. C. D. 【2013.1】. 一个空间几何体的三视图如图所示,则这个几何体是( )A.三棱柱 B.三棱锥 C.四棱柱 D.四棱锥 主视图侧视图俯视图【2013.7】有一个几何体的三视图如图所示,这个几何体是一个( )A. 棱台B.棱锥C.棱柱D.圆台【2014.1】有一个几何体的三视图如下图所示,这个几何体是一个( )正视图侧视图俯视图A.棱台 B.棱锥 C.棱柱 D.圆柱 3、向量运算(几何法则)【2011.1】在ABC中,D为BC的中点,则( )A. B. C. D. 2【2011.7】在平行四边形中,等于( ) 【2012.1】在四边形ABCD中,( )A. B. C. D. 【2012.7】已知四边形ABCD是菱形,=_【2013.1】.若四边形ABCD中,设则等于( A. B. C. D. 【2013.7】中,M是BC边的中点,则向量等于( )A. B. C. D. 【2014.1】在中,M时BC的重点,则等于( )A. B. C. D4、三角函数图像变换【2011.1】为了得到函数的图象,只需把函数图象上所有的点( )A. 向左平行移动个单位 B. 向左平行移动个单位C. 向右平行移动个单位D. 向右平行移动个单位【2011.7】为了得到函数,只需要把图象上所有的点的( )横坐标伸长到原来的倍,纵坐标不变 横坐标缩小到原来的倍,纵坐标不纵坐标伸长到原来的倍,横坐标不变 纵坐标缩小到原来的倍,横坐标不变【2012.1】已知函数的图象为C,为了得到函数的图象只需把C上所有的点( )A. 向右平行移动个单位长度B. 向左平行移动个单位长度C. 向右平行移动个单位长度D. 向左平行移动个单位长度【2012.7】为了得到函数的图象,只需要把函数的图象上的所有点( ) A.向右平行移动个单位 B.向右平行移动个单位C.向左平行移动个单位 D.向左平行移动个单位5、流程图(看图判断输出值)【2011.1】已知一个算法,其流程图如图1,则输出结果是( )A. 121 B. 40 C. 13D. 4【2011.7】已知一个算法,其流程图如图2,则输出的结果是( ) 【2012.1】已知一个算法,其流程图如图3,则输出结果是( )A. 7B. 9C. 11 D. 13【2012.7】一个算法的程序框图如图4,则输出结果是( ) A. 4 B.5 C.6 D.13 开始a=1a=3a+1输出a结束a 23a+1?是否x=1x=x+2x?是否结束输出x开始 图1 图2 图3 图4【2013.1】已知一个算法的流程图如下图5所示,则输出结果是( )A.10 B. 90 C.720 D.5040 【2013.7】已知一个算法,其流程图如下图6所示,若输入a=3,b=4,则输出的结果是( )A. B.6 C.7 D.12【2014.1】已知一个算法,其流程图下图7,则输出的结果是( )A.10 B.11 C.8 D.9开始x=0x=x+1x9?输出x结束是否图5 图6 图7 6、三角函数求值(诱导公式)【2011.1】计算:( )A. B. C. D. 【2011.7】计算的值为( ) 【2012.1】计算:的值为( )A. B. C. D. 【2012.7】计算的值为( )A. B. C. D. 【2013.1】.已知在角的终边上,则的值是( )A. B. C. D.【2013.1】.已知,则的值为( )A. B. C. D.【2013.7】在中,已知,则( )A. B. C. D.【2014.1】化简= .7、圆的方程求解【2011.1】圆心(),且过点(1,1)的圆的标准方程为( )A. B. C. D. 【2011.7】 若一个圆的圆心在直线上,在轴上截得的弦的长度等于,且与直线相切,则这个圆的方程可能是( ) 【2012.7】圆心为,半径为5的圆的标准方程为( )A. B. C. D.【2013.1】圆的圆心坐标是( )A.(2,3) B.(-2,-3) C. (2,-3) D. (-2,3)【2013.1】已知圆C的圆心为(2,0),且圆C与直线相切,则圆C的方程为_.【2013.7】已知直线l过点P(4,3),圆C:,则直线l与圆的位置关系是( )A.相交 B.相切 C.相交或相切 D.相离【2014.1】已知直线l过点,圆C:,则直线l与圆C的位置关系是( )A.相交 B. 相切 C.相交和相切 D.相离8、概率(几何概型)【2011.1】如图,正方形ABCD中,点P在边AD上,现有质地均匀的粒子散落在正方形ABCD内,则粒子落在PBC内的概率等于( )A. B. C. D. 【2011.7】若为的中线,现有质地均匀的粒子散落在内,则粒子在内的概率等于( ) 【2012.1】一个长、宽分别为和1的长方形内接于圆(如下图),质地均匀的粒子落入图中(不计边界),则落在长方形内的概率等于( )A. B. C. D. 【2012.7】 如图是一个边长为1的正方形,M为所在边上的中点,若随机掷一粒绿豆,则这粒绿豆落到阴影部分的概率为( ) A. B. C. D. 【2013.1】.在上随机取一个实数,则取到的实数是负数的概率为( )A. B. C. D1 【2013.7】在如图以O为中心的正六边形上随机投一粒黄豆,则这粒黄豆落到阴影部分的概率为( )A. B. C. D. 【2014.1】如图 ,在边长为2的正方形内有一内切圆,现从正方形内取一点P,则点P在圆内的概率为( )A. B. C. D. 9、函数的零点(判断零点所在区间)【2011.1】函数的零点所在的大致区间是( )A. B. (1,2)C. (2,3)D. (3,4)【2011.7】函数的零点所在的区间是( ) 【2012.1】函数的零点所在的区间是( )A. B. (-1,0) C. (1,2) D. (-2,-1)【2012.7】 已知函数f(x)的图像是连续且单调的,有如下对应值表:x12345f(x)-3-1125则函数f(x)的零点所在区间是( )A.(1,2) B.(2,3) C.(3,4) D.(4,5) 【2013.1】函数的零点所在区间是( )A.(-1,0) B.(0,1) C.(1,2) D.(2,3) 【2013.7】函数的零点是( )A.0 B.1 C.(0,0) D. (1,0)【2014.1】函数的零点时( )A.0 B. C. D10、正弦定理,余弦定理及推论的应用【2011.1】一个三角形的三边长依次是4、6、,这个三角形的面积等于( )A. 3B. 6C. 3D. 【2011.7】在中,、所对的边长分别是、,则的值为( ) 【2012.1】在ABC中,所对的边长分别是则的值为( )A. B. C. D. 【2012.7】ABC中,分别是角A,B,C所对的边,若,则b等于( )A. B.2 C. D.4 【2013.1】.在ABC中,所对的边长分别是,若,则b等于( )A. B. C. D. 【2013.7】在中,,所对的边为,则所对的边为( )A.1 B. C. D.2【2014.1】在中,内角A、B、C的对边分别为a、b、c,若,则b等于( )A.1 B. C. D.211、向量运算(数量积)【2011.1】在ABC中,( )A. B. 10C. 10D. 10【2011.7】已知向量、,与夹角等于,则等于( ) 【2012.1】已知向量,与的夹角等于,则等于( )A. B. 4 C. D. 2【2011.7】已知向量,且,则m等于( )A.2 B. C. D.【2013.1】 已知向量,若,则x的值是( )A.-4 B. C. D.4【2013.7】设向量,则向量的夹角为( )A. B. C. D.【2014.1】已知向量,则等于( )A.1 B. C.2 D.12、概率(古典概型)【2011.1】同时掷两个骰子,各掷一次,向上的点数之和是6的概率是( )A. B. C. D. 【2011.7】同时掷两个骰子,则向上的点数之积是的概率是( ) 【2012.1-11】甲、乙等5名同学按任意次序排成一排,甲站中间且乙不站两边的概率是( )A. B. C. D. 【2012.7】将50张卡片分别编号为1至50 ,从中任取一张 ,则所得卡片上的数字个位数为3的概率是_ .【2013.1】.将一个骰子掷一次,则向上的点数是3的倍数的概率是( )A. B. C. D 【2013.7】先后抛掷一枚质地均匀的硬币,则两次均正面向上的概率为( )A. B. C. D.1【2014.1】同时抛投两枚质地均匀的硬币,则两枚硬币均正面向上的概率为( )A. B. C. D. 13、线性规划(求函数最值)【2011.1】两个非负实数x、y满足的最大值等于( )A. 4B. 3C. 2D. 1【2011.7】已知实数、满足,则的最小值等于( ) 【2012.1】已知实数、满足则的最小值等于( )A. 0B. 1C. 2D. 3【2012.7】已知x,y满足约束条件,则目标函数的最小值为_ 【2012.7】若x0,则的最小值为_. 【2013.1】已知x,y满足约束条件,则的最小值为_.【2014.1】若实数x,y满足约束条件:,则的最大值等于 .函数在区间上的最大值是 .14、茎叶图与样本数据特征【2011.1】某交警部门对城区上下班交通情况作抽样调查,上下班时间各抽取12辆机动车的行驶速度(单位:km/h)作为样本进行研究,做出样本的茎叶图如右,则上班、下班时间行驶速度的中位数分别是( )A. 28 27.5B. 28 28.5C. 29 27.5D. 29 28.5【2011.7】如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数为 .【2012.1】甲、乙两位射击选手射击10次所得成绩,经计算得各自成绩的标准差分别为则_成绩稳定。【2012.7】 7名工人某天生产同一零件,生产的件数分别是15,17,10,13,17,17,16,设其平均数为a,中位数为b,众数为c,则有( )A.abc B.bca C.cba D.cab 【2012.7】为了解某校学生的身体发育情况,抽查了该校100名高中男生,根据他们的体重数据画出样本的频率分布直方图如图所示.请根据此图,估计该校2000名高中男生中体重在64公斤至66公斤的人数为( )A.16 B.32 C.160 D.320 .【2013.1】高二年级某班有50人,某次数学测验的分数在内,现将这次数学测验的分数分成如下5个组:绘制成如图所示的频率分布直方图,则分数在 1 2 5 2 2 3 5 6 3 1内的人数是_.【2013.7】如图是运动员在某个赛季得分的茎叶图,则该运动员的平均分为 .1 2 52 2 3 5 63 1【2014.1】如图是某运动员在某个赛季得分的茎叶统计图,则该运动员得分的中位数是( )A.2 B.3 C.22 D.2315、等差数列、等比数列基本量【20117】已知等差数列中,则前项的和等于( ) 【2012.1】已知等比数列中,则前4项的和等于( )A. 20B. -20 C. 10D. -10【2012.7】已知三个实数依次成等差数列,则一定等于( ) A. B. C. D. 【2012.7】在等比数列中,公比,且.求和的值;求的前6项和【2013.1】已知等比数列的前n项和为,若等于( )A.2 B. 15 C. 31 D.63【2014.1】已知数列是公比为实数的等比数列,且,则等于( )A2 B. 3 C. 4 D. 516、算法语言(判断输出值)【2011.1】当输入的x值为5时,图1的程序运行的结果等于_。【2011.7】当输入的值为,的值为时,图2程序运行的结果是 【2012.1】当输入的x值为3时,图3的程序运行的结果等于_。【2012.7】计算机执行图4的程序后,输出的结果是( )A.2,6 B.6,2 C.-2,6 D.6,-2INPUT xIF x1 THEN ELSE PRINT PRINT ENDINPUT xIF x =0 THEN PRINT xELSE PRINT -xEND IFEND图1 图2 图3 图4 【2013.1】.若的输入值为2,则右边程序运行结果是( )A. 1 B. 2 C. 3 D. 4 【2013.7】运行如图的程序,x输出值是 .化二进制数为十进制: .【2014.1】已知函数,用秦九昭算法计算的值时,首先计算的最内层括号内一次多项式的值是( )A. 1 B. 2 C. 3 D. 4 17.抽样方法(分层抽样)【2011.1】某校有老师200名,男生1200名,女生1000名,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知女生中抽取的人数为80,则n=_。【2011.7】某校有老师名,男生,女生名,现用分层抽样的方法从所有师生中抽取一个容量为的样本,则从女生中抽取的人数为 .【2012.1】某单位有甲、乙、丙三个部门,分别有职员27人、63人和81人,现按分层抽样的方法从各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,则该单位共抽取_人。【2013.1】某校高一、高二、高三年级各有学生400人、400人、300人,现按年级分层抽样的方法从这个年级学生中一共抽取了n名学生了解该校学生的视力情况。已知从高三年级抽取了30名学生,则n等于_.【2014.1】某工厂生产A、B、C三种不同型号的产品,产品数列之比一次为2:3:5,现用分层抽样的方法抽出一个容量为n的样本,其中A种型号产品有16件,那么此样本的容量n= .18、函数的定义域(二次根式)单调性、奇偶性、周期性【2011.1】函数的定义域是_(用区间表示)。【2011.7】已知函数求函数的定义域;证明是奇函数.【2012.1】函数的定义域是( )A. B. C. D. 【2012.7】函数的定义域是( )x=6x=x+10PRINT xEND13年7月图A. B. C.(1,2) D. 【2013.1】下列函数中,是偶函数的为( )A. B. C. D. 【2013.1】若上是增函数,则实数的取值范围是_.【2013.7】已知函数,则下列说法正确的是( )A.f(x)是奇函数,且在上是增函数B. f(x)是奇函数,且在上是减函数C. f(x)是偶函数,且在上是增函数D. f(x)是偶函数,且在上是减函数【2014.1】下列函数中,以为最小正周期的是( )A. B. C. D已知函数,则下列说话正确的是( )A. 为奇函数,且在上是增函数B. 为奇函数,且在上是减函数C. 为偶函数,且在上是增函数D. 为偶函数,且在上是偶函数19、二次方程有两个不等实根【2011.1】已知关于x的方程有两个不等实根,则m的取值范围是_(用区间表示)。【2011.7】已知的图象与轴没有公共点,则的取值范围是 (用区间表示)【2012.1】关于x的二次函数的图像与x没有公共点,则m的取值范围是_(用区间表示)。【2013.1】不等式的解集是( )A. B. C. D. 【2013.7】不等式的解集是( )A. B. C. D.【2014.1】不等式的解集是( )A. B. C. D. 20.直线方程,倾斜角,斜率【2011.1】经过直线与直线的交点,且与直线垂直的直线方程是( )A. B. C. D. 【2011.7】两条直线与的位置关系是( )平行 垂直 相交且不垂直 重合【2012.1】过点P(1,3),且平行于直线的直线方程为( )A. B. C. D. 【2011.7】已知直线的点斜式方程是,那么此直线的倾斜角为( ) 【2012.1】.已知直线的点斜式方程是,那么此直线的斜率为( )A. B. C.D. 1【2013.1】已知两点,则直线AB的斜率是( )A.2 B. C. D-【2013.7】直线x+y+1=0的倾斜角是( )A.-1 B. C. D.斜率为-2,在y轴的截距为3的直线方程是( )A.2 x+y+3=0 B.2 x-y+3=0 C.2 x-y-3=0 D.2 x+y-3=0 【2014.1】直线与直线的位置关系式( )A.平行 B. 垂直 C. 相交但不垂直 D.重合 21.距离公式【2012.7】 已知,直线,则被所截得的弦长为( )A. B.2 C. D.1 【2012.7】点到直线x-y=0的距离为( )A. B.1 C. D.【2013.7】已知直线l过点P(4,3),圆C:,则直线l与圆的位置关系是( )A.相交 B.相切 C.相交或相切 D.相离【2014.1】已知直线l过点,圆C:,则直线l与圆C的位置关系是( )A.相交 B. 相切 C.相交和相切 D.相离直线的纵截距是 .22、向量的数量积、三角函数性质化简求最值,周期、单调区间【2011.1-23】已知。(1) 求函数的最小正周期、最大值和最小值;(2)求函数的单调递增区间。【2011.7-23】已知函数1 它的最小正周期和最大值; 求它的递增区间.【2012.1-23】已知函数(1)求它的最小正周期和最大值; (2)求它的递增区间。【2012.7-23】 已知.1 的最小正周期和最大值; 求的递增区间.【2013.1】(本小题满分8分)已知.求的最小正周期;求的单调递增减区间.【2013.7】(本小题满分8分)已知函数.(1)求的值及的最小正周期;(2)求的最大值和最小值.【2014.1】(本小题满分8分)已知.(1)求的值及的最大值;(2)求的递减区间23、函数解析式求解及函数应用问题【2012.1】若函数是幂函数,则_。【2012.7】已知函数,f(2)=4,则函数f(x)的解析式是f(x)=_.【2011.1-24】为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时,超过部分每吨5元,当用水超过15吨时,超过部分每吨10元。(1)求水费y(元)关于用水量x(吨)之间的函数关系式;(2)若某户居民某月所交水费为93元,试求此用户该月的用水量。【2012.1-25】一个圆柱形容器的底部直径是6cm,高是10cm,现以每秒的速度向容器内注入某种溶液。(1)求容器内溶液的高度x关于注入溶液的时间的函数关系;(2)求此函数的定义域和值域。【2012.7-26】 某体育用品商场经营一批每件进价为40元的运动服,先做了市场调查,得到数据如下表:销售单价x(元)6062646668销售量y(件)600580560540520根据表中数据,解答下列问题: 建立一个恰当的函数模型,使它能较好地反映销售量y(件)与销售单价x(元)之间的函数关系,并写出这个函数模型的解析式; 试求销售利润z(元)与销售单价x(元)之间的函数关系式(销售利润 总销售收入 总进价成本); 在、条件下,当销售单价为多少元时,能获得最大利润?并求出此最大利润.【2013.1】(本小题满分10分)如图,在矩形ABCD中,E是AD的中点,P是AB边上的点,AB=3,AD=2.(1) 设AP=x,的周长为y,求函数y=f(x)的解析式;ABPDEC(2) 当取得最大值时,求AP的值。【2013.7】(本小题满分8分)某城市有一条长49km的地铁新干线,市政府通过多次价格听证,规定地铁运营公司按以下函数关系收费,其中y为票价(单位:元),x为里程数(单位:km). (1)某人若乘坐该地铁5km,该付费多少元?(2)甲乙两人乘坐该线地铁分别为25km、49km,谁在各自的行程内每km的平均价格较低?【2014.1】(本小题满分8分)某商场的一种商品每件进价为10元,据调查知每日销售量m(件)与销售价x(元)之间的函数关系为,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论