免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
提公因式法导学案第1课时学习目标1、知识与技能:(1经历探索多项式各项的公因式的过程,能确定多项式各项的公因式(2)会用提取公因式(单项式)法把多项式进行因式分解2、过程与方法:(1)学生自主探索解题途径,在此过程中,通过观察、对比等手段,确定多项式各项的公因式,加强直觉思维,渗透化归的思想方法,培养观察能力(2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展类比思想(3)寻找出确定多项式各项的公因式的一般方法,培养初步归纳能力3、情感、态度与价值观:进一步培养学生的矛盾对立统一的哲学观点以及实事求是的科学态度学习重难点重点:能观察出多项式的公因式;并根据分配律把公因式提出来难点:正确识别多项式的公因式学习过程预习案一、知识铺垫1、计算:(1)问题(1)请你是用比较简单的方法计算(2)以上解法中逆用了哪个运算律?2、学校打算把操场重新规划一下,分为绿化带、运动场、主席台三个部分,如下图,请你用两种方法表示计算操场总面积并写成分解因式的形式 = 3、你能把12、15因数分解吗?12、15这两数有公因数吗?是多少?类比联想:在多项式ma + mb + mc中,每一项有公共的因式吗?如果有,请你指出来. 二、预习自测:阅读课本95页完成以下问题(1)多项式中各项都含有的 叫做这个多项式各项的公因式(2)如果一个多项式各项都含有 ,那么把这个 提到括号外面,将多项式化成两个因式 的形式,这种分解因式的方法叫做提公因式法探究案探究一 如何确定多项式的公因式1、小组合作交流完成以下问题(1)、多项式 22 +63 各项的公因式是什么?(2)、你尝试将22 +63 因式分解(3)、 22 +63=x(2x+6x2)22 +63=x2(2+6x)22 +63=2x(x+3x)22 +63=2x2(1+3x)以上是不同小组的答案,你认为22 +63 各项的公因式是什么最为合理?2、例1 8a3b212ab3c 的公因式是什么?思路分析:一看系数:取各项系数的最大公约数 二看字母:取相同的字母三看指数:相同字母最低次幂归纳:公因式为各项系数的最大公约数和相同字母的最低次幂的积8a3b212ab3c 的公因式是4ab23、跟踪训练找出下列各多项式中的公因式:(1)8x+64(2)m2n3 -3n2m3(3)2ab2+ 4abc +6 a2b探究二 用提公因式法分解因式例2 把 9x26xy+3xz 分解因式解:9x2 6 x y + 3x z=3x3x - 3x2y + 3xz =3x (3x-2y+z) 学法指导:用提公因式法分解因式的步骤:第一步. 找出公因式第二步. 将多项式的每一项写成公因式与另一个因式的积第三步 提取公因式,将多项式化成两个因式乘积的形式。跟踪训练:把下列各式分解因式: (1) 3ma+14ma2(2) 16x4+32x3-56x2训练案巩固训练1、 比一比:分解因式: 12x2y+18xy2甲同学:解:12x2y+18xy2: 乙同学:解:12x2y+18xy2 =6xy(2x+3y) =3xy(4x+6y) 对比两位同学的不同结果,请说说你的看法方法指导:找准公因式,一次要提完。 2、议一议:小明的解法有误吗?如果有误请写出正确答案。把 8 a 3 b2 12ab 3 c + ab分解因式8 a3b2 12ab3c + ab= ab8a2b - ab12b2 c +ab1= ab(8a2b - 12b2c)方法指导:当多项式的某一项和公因式相同时,提公因式后剩余的项是1。因式分解后括号内的多项式的项数与原多项式的项数相同。3、想一想:把-24x3+12x2-28x分解因式 观察次多项式与以上多项式的不同之处,你先怎么做比较好?并把此多项式分解因式思路分析:此多项式的首项系数为负 ,应先提出“-” 使括号内第一项系数变为正数注意括号内各项都要变号4、谈一谈:通过本节课的学习,你有哪些收获?还有哪些疑惑?学法点拨(1)、因式分解必须分解彻底,括号内的多项式不能再含有(公因式)。(2)、因式分解后括号内的多项式的项数与原多项式的项数(相同)。(3)、如果多项式的第一项的系数是负数时,应先提(“-”),使(多项式中的每一项都变号),然后再提取其它公因式。(4)、将分解因式后的式子再进行单项式与多项式相乘,其积应与原式(相同)。课堂检测A组:1多项式6ab2+18a2b2-12a3b2c的公因式( ) (A)6ab2c (B)ab2 (C)6ab2 (D)6a3b2C2分解-4x3+8x2+16x的结果是( ) (A)-x(4x2-8x+16) (B)x(-4x2+8x-16) (C)4(-x3+2x2-4x) (D)-4x(x2-2x-4) 3下列用提公因式法分解因式正确的是( )(A)12abc-9a2b2=3abc(4-3ab) (B)3x2y-3xy+6y=3y(x2-x+2y)(C)-a2+ab-ac=-a(a-b+c) (D)x2y+5xy-y=y(x2+5x)4把下列各式分解因式:(1)5a2b-15ab2(2)3x2-6xy+x(3) -2x2-12xy2+8xy3B组:1、利用分解因式计算: (-2)101+(-2)1002、已知a+b=3,ab=2,求代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国液体化工物流行业技术升级与设备改造分析报告
- 2025锌产品购销合同范本
- 2025-2030中国漂洗添加剂行业消费升级与高端化发展趋势
- 2025生物制药校招题目及答案
- 2025-2030中国气体采样器环境应急监测网络完善过程中的设备标准化研究
- 2025全栈开发工程师校招真题及答案
- 2025授权收购协议合同范本格式
- 2025秋招:智慧楼宇管理员笔试题及答案
- 2025年实习生培训合同协议书
- 2025打印机的租赁合同样本
- 中国铁路百年征程
- 第3章能量的转化与守恒(单元解读讲义)科学浙教版九年级上册
- 气道廓清护理个案
- 公路运输安全培训教学课件
- 金融机构2025年反洗钱培训与案例分享
- 输血过敏反应课件
- 中国招投标协会招标采购从业人员招标采购法律法规真题及答案
- 同心共育静待花开-2025-2026学年高二上学期家长会
- 2025高考历史全国I卷真题试卷(含答案)
- 《地方财政学》课程教学大纲
- 护理学(副高级职称)考试题库及答案
评论
0/150
提交评论