




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第26课时课题: 对数函数及其性质(二)课 型:新授课教学目标:了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质;学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.教学重点与难点:理解反函数的概念教学过程:一、复习准备:1. 提问:对数函数的图象和性质?2. 比较两个对数的大小:与 ; 与3. 求函数的定义域 ; 二、讲授新课:1. 教学对数函数模型思想及应用: 出示例题(P72例9):溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升. ()分析溶液酸碱读与溶液中氢离子浓度之间的关系? ()纯净水摩尔/升,计算纯净水的酸碱度.讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想2反函数的教学: 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) 探究:如何由求出x? 分析:函数由解出,是把指数函数中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为.那么我们就说指数函数与对数函数互为反函数 在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质? 分析:取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么? 探究:如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗,为什么?由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线对称)3、例题讲解例1、求下列函数的反函数(1) (2)例2、求函数的定义域、值域和单调区间三、巩固练习:1练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域)2.求下列函数的反函数: y=(xR); y= (a0,a1,x0)1 己知函数的图象过点(1,3)其反函数的图象过(2,0)点,求的表达式.4教材P75、B组1、2四、小结:函数模型应用思想;反函数概念;阅读P73材料五、作业P74页、9、12后记:第27课时课题 :幂函数课 型:新授课教学目标:通过具体实例了解幂函数的图象和性质,体会幂函数的变化规律及蕴含其中的对称性并能进行简单的应用. 教学重点:从五个具体幂函数中认识幂函数的一些性质. 教学难点:画五个幂函数的图象并由图象概括其性质. 教学过程:一、新课引入:(1)边长为的正方形面积,这里是的函数;(2)面积为的正方形边长,这里是的函数;(3)边长为的立方体体积,这里是的函数;(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数;(5)购买每本1元的练习本本,则需支付元,这里是的函数. 观察上述五个函数,有什么共同特征?(指数定,底变)二、讲授新课:1、教学幂函数的图象与性质 给出定义:一般地,形如的函数称为幂函数,其中为常数. 练:判断在函数中,哪几个函数是幂函数? 作出下列函数的图象:(1);(2);(3);(4);(5) 引导学生观察图象,归纳概括幂函数的的性质及图象变化规律:()所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);()时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;()时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴2、教学例题:例1(P78例1)证明幂函数上是增函数 证:任取则 = = 因0,0 所以,即上是增函数.例2. 比较大小:与;与;与. 三、巩固练习:1、论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性2. 比较下列各题中幂值的大小:与;与;与.四、小结:提问方式 :(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?(2)你能根据函数图象说出有关幂函数的性质吗?五、作业P79页1、2、3题六、课后记第28课时课题:基本初等函数习题课课 型:复习课教学要求:掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质. 教学重点:指数函数的图象和性质. 教学难点:指数函数、对数函数、幂函数性质的简单应用. 教学过程:一、复习准备:1. 提问:指数函数、对数函数、幂函数的图象和性质. 2. 求下列函数的定义域:;3. 比较下列各组中两个值的大小:;二、典型例题:例1:已知,54b3,用的值解法1:由3得b解法2:由设所以即:所以因此得:例2、函数的定义域为 .例3、函数的单调区间为 .例4、已知函数.判断的奇偶性并予以证明.例5、按复利计算利息的一种储蓄,本金为元,每期利率为,设本利和为元,存期为,写出本利和随存期变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息. )(小结:掌握指数函数、对数函数、幂函数的图象与性质,会用函数性质解决一些简单的应用问题. )三、 巩固练习:1.函数的定义域为 .,值域为 .2. 函数的单调区间为 .3. 若点既在函数的图象上,又在它的反函数的图象上,则=_,=_4. 函数(,且)的图象必经过点 .5. 计算 6. 求下列函数的值域: ; ; ; 四、小结 本节主要是通过讲炼结合复习本章的知识提高解题能力五、课后作业:教材P82复习参考题A组18题课后记:第29课时课题:方程的根与函数的零点课 型:新授课教学目标1.理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件2.通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法教学重点、难点重点: 零点的概念及存在性的判定难点: 零点的确定学法与教学用具1 学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。2 教学用具:投影仪。教学过程(一)创设情景,揭示课题1、提出问题:一元二次方程 ax2+bx+c=0 (a0)的根与二次函数y=ax2+bx+c(a0)的图象有什么关系?2先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)方程与函数方程与函数 方程与函数 1师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二) 互动交流 研讨新知函数零点的概念:对于函数,把使成立的实数叫做函数的零点函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标即:方程有实数根函数的图象与轴有交点函数有零点函数零点的求法:求函数的零点:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点1师:引导学生仔细体会左边的这段文字,感悟其中的思想方法生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:代数法; 几何法2根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论二次函数的零点:二次函数(),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(),方程无实根,二次函数的图象与轴无交点,二次函数无零点3零点存在性的探索:()观察二次函数的图象: 在区间上有零点_;_,_,_0(或) 在区间上有零点_;_0(或)()观察下面函数的图象 在区间上_(有/无)零点;_0(或) 在区间上_(有/无)零点;_0(或) 在区间上_(有/无)零点;_0(或)由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?4生:分析函数,按提示探索,完成解答,并认真思考师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析师:引导学生理解函数零点存在定理,分析其中各条件的作用(三)、巩固深化,发展思维1学生在教师指导下完成下列例题例1 求函数f(x)=的零点个数。问题:(1)你可以想到什么方法来判断函数零点个数?(2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?例2求函数,并画出它的大致图象师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数2P88页练习第二题的(1)、(2)小题(四)、归纳整理,整体认识1 请学生回顾本节课所学知识内容有哪些,所涉及到的主要数学思想又有哪些;2 在本节课的学习过程中,还有哪些不太明白的地方,请向老师提出。(五)、布置作业 P88页练习第二题的(3)、(4)小题。课后记:第30课时课题:用二分法求方程的近似解(1)课 型:新授课教学目标理解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;体会程序化解决问题的思想,为算法的学习作准备。 教学重点、难点重点:用二分法求解函数f(x)的零点近似值的步骤。难点:为何由a b 便可判断零点的近似值为a(或b)?教学设想(一)、创设情景,揭示课题 提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 x2x6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=x2x6在区间内有零点;进一步的问题是,如何找到这个零点呢?(二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)0.084,因为f(2.5)*f(3)0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)0.512,因为f(2.75)*f(2.5)0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于2.53906252.53125=0.00781250.01,所以我们可以将x=2.54作为函数f(x)=x2x6零点的近似值,即方程x2x6=0近似值。这种求零点近似值的方法叫做二分法。1师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法生:认真理解二分法的函数思想,根据课本上二分法的一般步骤,探索求法。 2为什么由a b 便可判断零点的近似值为a(或b)?先由学生思考几分钟,然后作如下说明:设函数零点为x0,则ax0b,则:0x0aba,abx0b0;由于a b ,所以x0 a ba,x0 b ab,即a或b 作为零点x0的近似值都达到了给定的精确度。、巩固深化,发展思维1 学生在老师引导启发下完成下面的例题例2借助计算器用二分法求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消费贷受托支付合同范本
- 物流车队调动协议书范本
- 网约出租车买卖合同范本
- 销售合伙人模式合同范本
- 清洗窗帘合同协议书模板
- 离婚协议女方补偿协议书
- 海鲜店合作协议合同范本
- 长期租地建房合同协议书
- 甲方授权乙方的合同范本
- 美业学员合同协议书范本
- GB/T 30337-2013物流园区统计指标体系
- 政府采购项目履约验收书参考样本(服务类)
- GB/T 24538-2009坠落防护缓冲器
- GB 4806.7-2016食品安全国家标准食品接触用塑料材料及制品
- 市政工程测量教材课件
- 2023年郑州发展投资集团有限公司招聘笔试模拟试题及答案解析
- 精神科医师晋升副主任(主任)医师病例分析专题报告(双相障碍诊治)
- 2022大学生就业力调研报告
- 3000个左右的初中英语新课程标准词汇表
- 样品签收记录表
- 湖北省2019年考试录用公务员全省法官助理职位资格复审公告
评论
0/150
提交评论