




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Python自学笔记Matplotlib风羽自定义对于气象专业的小学生来说,风场是预报重要的参考数据,我们所知的风羽有四种:短线代表风速2m/s,长线代表风速4m/s,空心三角代表风速20m/s,实心三角代表风速50m/s。而matplotlib的风羽只有短线、长线、三角三种,而这里的三角不分空心实心,但是可通过改变风羽颜色为白色使三角变为空心形状,虽然这三种可以自定义各自代表的风速,但是仍与我们的使用习惯不符,即使把三角设成20m/s,原本一个实心三角就能表示的50m/s的风在matplotlib中需要两个三角外加两条长线一条短线。为了迎合预报员的需求,我在研究了matplotlib的风场函数barbs()的源代码quiver.py文件后,对quiver.py做了适当的调整,使得matplotlib也有了空心三角和实心三角之分。一、函数barbs的使用barb(X, Y, U, V, *kw)X:风场数据X坐标Y:风场数据Y坐标U:风的水平方向分量V:风的垂直方向分量Demonstration of wind barb plotsimport matplotlib.pyplot as pltimport numpy as npx = np.linspace(-5, 5, 5)X, Y = np.meshgrid(x, x)U, V = 12*X, 12*Ydata = (-1.5, .5, -6, -6),(1, -1, -46, 46),(-3, -1, 11, -11),(1, 1.5, 80, 80),(0.5, 0.25, 25, 15),(-1.5, -0.5, -5, 40)data = np.array(data, dtype=(x, np.float32), (y, np.float32), (u, np.float32), (v, np.float32)# Default parameters, uniform gridax = plt.subplot(2, 2, 1)ax.barbs(X, Y, U, V)# Arbitrary set of vectors, make them longer and change the pivot point#(point around which theyre rotated) to be the middleax = plt.subplot(2, 2, 2)ax.barbs(datax, datay, datau, datav, length=8, pivot=middle)# Showing colormapping with uniform grid. Fill the circle for an empty barb,# dont round the values, and change some of the size parametersax = plt.subplot(2, 2, 3)ax.barbs(X, Y, U, V, np.sqrt(U*U + V*V), fill_empty=True, rounding=False,sizes=dict(emptybarb=0.25, spacing=0.2, height=0.3)# Change colors as well as the increments for parts of the barbsax = plt.subplot(2, 2, 4)ax.barbs(datax, datay, datau, datav, flagcolor=r,barbcolor=b, g, barb_increments=dict(half=10, full=20, flag=100),flip_barb=True)plt.show()二、源代码解读1.class Barbs()class Barbs(mcollections.PolyCollection): erpd def _init_(self, ax, *args, *kw): . def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): . def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length,pivot, sizes, fill_empty, flip): . def set_UVC(self, U, V, C=None): . def set_offsets(self, xy): . 通过读源代码可知类Barbs有五个方法分别为_init_、_find_tails、_make_barbs、set_UVC、set_offsets。2._init_ erpd def _init_(self, ax, *args, *kw): The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %(barbs_doc)s self._pivot = kw.pop(pivot, tip) self._length = kw.pop(length, 7) barbcolor = kw.pop(barbcolor, None) flagcolor = kw.pop(flagcolor, None) self.sizes = kw.pop(sizes, dict() self.fill_empty = kw.pop(fill_empty, False) self.barb_increments = kw.pop(barb_increments, dict() self.rounding = kw.pop(rounding, True) self.flip = kw.pop(flip_barb, False) transform = kw.pop(transform, ax.transData) # Flagcolor and and barbcolor provide convenience parameters for # setting the facecolor and edgecolor, respectively, of the barb # polygon. We also work here to make the flag the same color as the # rest of the barb by default if None in (barbcolor, flagcolor): kwedgecolors = face if flagcolor: kwfacecolors = flagcolor elif barbcolor: kwfacecolors = barbcolor else: # Set to facecolor passed in or default to black kw.setdefault(facecolors, k) else: kwedgecolors = barbcolor kwfacecolors = flagcolor # Parse out the data arrays from the various configurations supported x, y, u, v, c = _parse_args(*args) self.x = x self.y = y xy = np.hstack(x:, np.newaxis, y:, np.newaxis) # Make a collection barb_size = self._length * 2 / 4 # Empirically determined mcollections.PolyCollection._init_(self, , (barb_size,), offsets=xy, transOffset=transform, *kw) self.set_transform(transforms.IdentityTransform() self.set_UVC(u, v, c)_init_()方法为初始化方法,此方法中flagcolor、barbcolor为设置风羽颜色的关键字,中间的说明文字提示颜色设置是针对所有的风羽的,所以通过颜色设置达不到风羽中既有空心白色三角又有实心黑色三角。初始化方法中在对一些参数进行了初始化赋值后执行了set_UVC()方法,所以我们顺着这个set_UVC()方法往下继续读。3.set_UVC() def set_UVC(self, U, V, C=None): self.u = ma.masked_invalid(U, copy=False).ravel() self.v = ma.masked_invalid(V, copy=False).ravel() if C is not None: c = ma.masked_invalid(C, copy=False).ravel() x, y, u, v, c = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v, c) else: x, y, u, v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) magnitude = np.hypot(u, v) flags, emptyflags,barbs, halves, empty = self._find_tails(magnitude, self.rounding, *self.barb_increments) # Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, flags, emptyflags,barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip) self.set_verts(plot_barbs) # Set the color array if C is not None: self.set_array(c) # Update the offsets in case the masked data changed xy = np.hstack(x:, np.newaxis, y:, np.newaxis) self._offsets = xy self.stale = True在此方法中,首先进行了变量的命名赋值,然后依次执行了方法_find_tails和_make_barbs。_make_barbs的输入为_find_tails的输出,_find_tails的输入中有一个为magnitude = np.hypot(u, v),np.hypot()为勾股定理方法,因此可知magnitude为风速。4._find_tails def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (i.e., = 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. # If rounding, round to the nearest multiple of half, the smallest # increment if rounding: mag = half * (mag / half + 0.5).astype() num_flags = np.floor(mag / flag).astype() mag = np.mod(mag, flag) num_barb = np.floor(mag / full).astype() mag = np.mod(mag, full) half_flag = mag = half empty_flag = (half_flag | (num_flags 0) | (num_emptyflags 0) |(num_barb 0) return num_flags,num_barb, half_flag, empty_flag通过读此方法的说明文档可知,此方法作用为根据输入的风速、设置的短线长线三角的数值计算并返回三角、长线、短线的个数以及有没有无风的情况。5._make_barbs def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, pivot, sizes, fill_empty, flip): This function actually creates the wind barbs. *u* and *v* are components of the vector in the *x* and *y* directions, respectively. *nflags*, *nbarbs*, and *half_barb*, empty_flag* are, *respectively, the number of flags, number of barbs, flag for *half a barb, and flag for empty barb, ostensibly obtained *from :meth:_find_tails. *length* is the length of the barb staff in points. *pivot* specifies the point on the barb around which the entire barb should be rotated. Right now, valid options are head and middle. *sizes* is a dictionary of coefficients specifying the ratio of a given feature to the length of the barb. These features include: - *spacing*: space between features (flags, full/half barbs) - *height*: distance from shaft of top of a flag or full barb - *width* - width of a flag, twice the width of a full barb - *emptybarb* - radius of the circle used for low magnitudes *fill_empty* specifies whether the circle representing an empty barb should be filled or not (this changes the drawing of the polygon). *flip* is a flag indicating whether the features should be flipped to the other side of the barb (useful for winds in the southern hemisphere. This function returns list of arrays of vertices, defining a polygon for each of the wind barbs. These polygons have been rotated to properly align with the vector direction. # These control the spacing and size of barb elements relative to the # length of the shaft spacing = length * sizes.get(spacing, 0.125) full_height = length * sizes.get(height, 0.4) full_width = length * sizes.get(width, 0.25) empty_rad = length * sizes.get(emptybarb, 0.15) # Controls y point where to pivot the barb. pivot_points = dict(tip=0.0, middle=-length / 2.) # Check for flip if flip: full_height = -full_height endx = 0.0 endy = pivot_pointspivot.lower() # Get the appropriate angle for the vector components. The offset is # due to the way the barb is initially drawn, going down the y-axis. # This makes sense in a meteorological mode of thinking since there 0 # degrees corresponds to north (the y-axis traditionally) angles = -(ma.arctan2(v, u) + np.pi / 2) # Used for low magnitude. We just get the vertices, so if we make it # out here, it can be reused. The center set here should put the # center of the circle at the location(offset), rather than at the # same point as the barb pivot; this seems more sensible. circ = CirclePolygon(0, 0), radius=empty_rad).get_verts() if fill_empty: empty_barb = circ else: # If we dont want the empty one filled, we make a degenerate # polygon that wraps back over itself empty_barb = np.concatenate(circ, circ:-1) barb_list = for index, angle in np.ndenumerate(angles): # If the vector magnitude is too weak to draw anything, plot an # empty circle instead if empty_flagindex: # We can skip the transform since the circle has no preferred # orientation barb_list.append(empty_barb) continue poly_verts = (endx, endy) offset = length # Add vertices for each flag for i in range(nflagsindex): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( endx, endy + offset, endx + full_height, endy - full_width / 2 + offset, endx, endy - full_width + offset) offset -= full_width + spacing # Add vertices for each barb. These really are lines, but works # great adding 3 vertices that basically pull the polygon out and # back down the line for i in range(nbarbsindex): poly_verts.extend( (endx, endy + offset), (endx + full_height, endy + offset + full_width / 2), (endx, endy + offset) offset -= spacing # Add the vertices for half a barb, if needed if half_barbindex: # If the half barb is the first on the staff, traditionally it # is offset from the end to make it easy to distinguish from a # barb with a full one if offset = length: poly_verts.append(endx, endy + offset) offset -= 1.5 * spacing poly_verts.extend( (endx, endy + offset), (endx + full_height / 2, endy + offset + full_width / 4), (endx, endy + offset) # Rotate the barb according the angle. Making the barb first and # then rotating it made the math for drawing the barb really easy. # Also, the transform framework makes doing the rotation simple. poly_verts = transforms.Affine2D().rotate(-angle).transform( poly_verts) barb_list.append(poly_verts) return barb_list通过读此方法的说明文档可知,此方法作用为根据输入的风数据以及短线长线三角的个数绘制风羽风向杆。绘制过程为:判断地图坐标点是不是无风,如果无风就绘制一个空心圆圈代表。如果有风就开始按照三角、长线、短线的顺序绘制。绘制方法为:创建一个用于存储关键点坐标的列表poly_verts计算关键点坐标通过transform方法将关键点坐标列表中的各个关键点依次用黑线连接起来,最终将风羽风向杆绘制出来此方法的几个关键变量:spacing:风羽上短线长线以及三角间的距离full_height:三角的高度full_width :三角的宽度endx :风羽绘制的起始点x坐标endy:风羽绘制的起始点y坐标angles:风向杆角度poly_verts :绘制风羽风向杆的关键点列表offset:绘制完一个三角或线后下一个三角或线的关键起始坐标 poly_verts = (endx, endy) offset = length # Add vertices for each flag for i in range(nflagsindex): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( endx, endy + offset, endx + full_height, endy - full_width / 2 + offset, endx, endy - full_width + offset) offset -= full_width + spacing这一段是绘制风羽的主要代码,利用图片的形式说明三、绘制空心实心三角在了解了风羽的绘制过程后,发现可以通过增加关键点直接绘制实心三角,通过原绘制方法绘制空心三角。1.实心三角绘制实心三角绘制代码 # Add vertices for each flag for i in range(nflagsindex): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( endx, endy + offset, endx + full_height/4, endy - full_width / 8 + offset, endx, endy - full_width / 8 + offset, endx + full_height/4, endy - full_width / 8 + offset, endx + full_height/2, endy - full_width / 4 + offset, endx, endy - full_width / 4 + offset, endx + full_height/2, endy - full_width / 4 + offset, endx + 3*full_height/4, endy - 3*full_width / 8 + offset, endx, endy - 3*full_width / 8 + offset, endx + 3*full_height/4, endy - 3*full_width / 8 + offset, endx + full_height, endy - full_width / 2 + offset, endx,endy-full_width/2+offset, endx + full_height, endy - full_width / 2 + offset, endx + 3*full_height/4, endy - 5*full_width / 8 + offset, endx, endy - 5*full_width / 8 + offset, endx + 3*full_height/4, endy - 5*full_width / 8 + offset, endx + full_height/2, endy - 3*full_width / 4 + offset, endx, endy - 3*full_width / 4 + offset, endx + full_height/2, endy - 3*full_width / 4 + offset, endx + full_height/4, endy - 7*full_width / 8 + offset, endx, endy - 7*full_width / 8 + offset, endx + full_height/4, endy - 7*full_width / 8 + offset, endx, endy - full_width + offset) offset -= full_width + spacing实心三角绘制示意图方法参数中加入nfullflagsdef _make_barbs(self, u, v, nfullflags, nflags,nbarbs, half_barb, empty_flag, length,pivot, sizes, fill_empty, flip):.2.实心三角个数计算 def _find_tails(self, mag, rounding=True, half=2, full=4, flag=20,fullflag=50): Find how many of each of the tail pieces is necessary. Flag specifies the incremen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度电视机产品智能语音交互技术研发合同
- 2025年度土地买卖合同履行及监管规范
- 诺如知识培训方案课件
- 2025年度汽车租赁企业培训及拓展合同
- 2025年度智慧校园食堂运营管理承包合同
- 2025版涂料产品进出口代理合同标准范本
- 2025版科技园区融资中介服务合作协议范本
- 2025版新能源设备以租代售租赁协议范本
- 2025版水管材料电商平台服务条款合同
- 2025合同样本库建设与管理的规范指南
- 《医药电子商务实务》考试复习题库(含答案)
- 钢板仓施工流程及安全保证方案
- 农业互联网与农产品营销策略优化
- 知识产权具体实施细则
- 泄密案件整改报告范文
- 船舶危险源辨识及防范措施
- 严重精神障碍患者报告卡
- 空气源热泵计算
- 学员陪跑合同模板
- 钢结构大棚安拆专项施工方案
- 消化内科护士进修总结汇报
评论
0/150
提交评论