已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小结与思考 复习 在两条被截线的在截线的 这样的一对角称为同位角 在两条被截线 在截线的这样的一对角称为内错角 在两条被截线 在截线的 这样的一对角称为同旁内角 同位角 内错角 同旁内角 1 3 5 7 2 4 6 8 a b c 同一方向 同旁 之间 之间 同旁 两旁 1 如图 与 B 与 与 分别是哪两条直线被哪一条直线截成的角 它们分别是什么角 A B C D E 知识点梳理 一 两 同旁内角互补 两直线平行 内错角相等 两直线平行 同位角相等 两直线平行 两直线平行 同旁内角互补 两直线平行 同位角相等 两直线平行 内错角相等 直线平行的条件 二 两 直线 平行的性质 两条平行直线被第三条直线直线所截 互换 2 使用判定定理时是已知 说明 角的关系 两直线平行 使用性质定理时是已知 说明 两直线平行 角的关系 两类定理的比较 练习 按下图填空 因为 所以 理由 因为 180 所以 理由 因为 所以 理由 同位角相等 两直线平行 两直线平行 内错角相等 同旁内角 互补 两直线平行 1 因为 所以 理由是 两直线平行 内错角相等 因为 所以 D 180 理由是 两直线平行 同旁内角互补 BCD 练习 按图填空 A B D E F 1 2 3 4 如图 已知AB CD 1 4 那么BE CF吗 为什么 练习3 解答题 c 平移的概念 三 平移的概念及特征 在平面内 将一个图形沿着某个方向移动一定的距离 这样的图形运动叫做图形的平移 平移不改变图形的 和 平移的特征 形状 大小 图形经过平移 连接各组对应点的线段平行且相等或在同一条直线上且相等 四 平移的性质 练习4 计算 1 如图 大矩形的长是10cm 宽是8cm 阴影部分的宽为2cm 则空白部分的面积是多少 若 BAE 60 AEB 98 则 DcF CFD 2 如图 ABE向右平移一定距离后得到 CDF 图中存在平行且相等的三组线段是AB和 AE和 AC和 CD CF BD或EF 60 98 60 98 五 三角形的有关知识结构 三角形的两边之和 第三边 大于 三角形的角平分线 中线 高线分别有几条 它们是如何分布的 它们的交点情况又如何呢 2 有长为3 5 7 10的四根木条 从中选三根能摆出 个三角形A 1B 2C 3D 4 B 3 在 ABC中 AB 7BC 3 并且AC为偶数 那么 ABC的周长为 16或18 4 在 ABC中 设n为线段BC上新增加点的个数 s为连结A与新增点所得三角形的总个数 填表 新增加点的个数n 所得三角形的总数s 0 1 2 3 n C A B A B C A B C 1 3 6 10 C A B 2 我从同伴身上学到了什么 1 这节课我学到了什么 如图 A的同位角是 3的内错角是 A的同旁内角是 C的同位角是 如图 若 C 则DE BC 理由 若 2 180 则 理由 若 B 则EF 理由 若 2 4 则 理由 知识点应用 3 如图 若AB CD CD EF 则AB与EF的位置关系是 4 如图 若AB CD CD EF 则AB与EF的位置关系是 图5 5 如图 已知AC平分 BAD 1 2 B 70 1 试说明AB CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高中物理竞赛法律思维在物理中的应用测试(四)
- 信息技术环境下幼儿园德育的新视角
- 智能防火墙技术-洞察与解读
- 高速公路双方合同范本
- 2025年储能电站容量协同控制报告
- 2025常用的事业单位医生聘用合同样本
- 2025年农行质押贷款合同范本
- 电费代收代缴合同范本
- 电销外包项目合同范本
- 销售团队合伙合同协议
- 湖南省娄底市2024-2025学年高二数学上学期期中试题
- DG-TJ 08-2397-2022 市域铁路结构安全保护技术标准
- 淮安市房屋租赁合同范本
- 数电票商品税收分类编码表
- 大数据实训基地合作协议
- 你好共青团!入团积极分子团前教育学习
- MOOC 光学发展与人类文明-华南师范大学 中国大学慕课答案
- 体育场馆安全隐患分析
- DB22-T 3628-2023 自然资源地籍调查成果验收规范
- 邮政快递行业法律法规培训
- 输血科对输血病历不合格原因分析品管圈鱼骨图柏拉图
评论
0/150
提交评论