图像复原基本原理.ppt_第1页
图像复原基本原理.ppt_第2页
图像复原基本原理.ppt_第3页
图像复原基本原理.ppt_第4页
图像复原基本原理.ppt_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

图像复原 Imagerestoration 模糊 退化 6 1图像退化原因与复原技术分类 图像质量的退化 degradation 由于射线辐射 大气湍流等造成的照片畸变A D过程会损失部分细节 造成图像质量下降镜头聚焦不准产生的散焦模糊成像系统中始终存在的噪声干扰相机与景物之间的相对运动产生的运动模糊底片感光 图像显示时会造成记录显示失真成像系统的像差 非线性畸变 有限带宽携带遥感仪器的飞机或卫星运动的不稳定 以及地球自转等因素引起的照片几何失真 图像复原又叫图像恢复 是指在研究图像退化原因的基础上 以退化图像为依据 根据一定的先验知识 建立一个退化模型 然后用相反的运算 恢复原始的景物图像图像复原对已知的退化图像进行分析 估计出最接近原图像的结果 是一个信号的求逆过程 图像复原要明确规定质量准则衡量接近原始景物图像的程度图像复原的关键 复原模型可以用连续数学或离散数学处理复原模型必须根据导致图像退化的数学模型来对退化图像进行处理 具体可通过在空间域卷积或在频域相乘实现 传统的复原方法基于平稳图像 线性空间不变的退化系统 图像和噪声统计特性的先验知识已知等条件下进行讨论现代的复原方法适合于非平稳图像 如卡尔曼滤波 采用非线性方法 如神经网络 在信号与噪声的先验知识未知 如盲图像复原 等前提下开展工作 图像复原与图像增强的关系 联系都可以改善输入图像的视觉质量区别图像增强 主观 为了视觉系统的生理接受特点而设计的一种改善方法目的 得到较好的视觉效果图像复原 客观 图像自身在某种情况下会退化 致使图像品质下降目的 将退化过程用模型描述 并采用相反过程处理 以恢复原始图像 图像增强 图像复原 对一幅已经退化的图像 通常的做法是先做图像复原 再进行图像的增强处理 退化模型 退化过程通常可以被模型化为一个退化函数和一个噪声 退化系统 图像复原的过程 图像复原的目的是利用逆求解方法恢复退化 失真的图像根据g x y 获得关于f x y 的最佳估计f x y 与图像增强的区别图像恢复需要利用已知或可以估计出的退化模型 先验知识 prioriknowledge Originalcontentandquality Goodlooking 最佳估计 而非 真实估计 由于存在可能导致图像复原的病态性最佳估计问题不一定有解由于图像复原中可能遇到奇异问题逆问题可能存在多个解 图像恢复 根据g x y 获得关于原图像的近似估计f x y 恢复的方法 如果我们所知道的退化函数H和噪声n的信息愈多 我们就能尽可能准确地估计原始输入图像如果退化函数H是线性 空间位移不变性系统空域中的退化图像g x y h x y f x y n x y 频域中的表示G u v H u v F u v N u v 图像复原的分类按照退化模型无约束 仅将图像看做一个数字矩阵 从数学角度处理有约束 还考虑图像的物理约束按照是否需要用户干预自动式交互式按照处理所在的域空间域恢复频率域恢复 噪声模型 噪声 主要源自图像的获取的传输过程噪声的描述 Probabilitydensityfunctions PDF 噪声模型 通常由噪声的物理来源特性决定高斯噪声 源于电子电路噪声和由低照明度或高温带来的传感器噪声 瑞利分布 特征化噪声 指数分布 伽马分布 激光成像 脉冲噪声 椒盐噪声 错误的开关操作 均匀分布 常作为模拟随机数产生器的基础 实践中较少 高斯噪声 瑞利噪声 伽马噪声 指数噪声 均匀噪声 脉冲噪声 A zeros 120 120 fori 21 100forj 21 100A i j 127 endendfori 41 80forj 41 80A i j 255 endendA uint8 A figure subplot 241 imshow A subplot 245 hist double A 10 B imnoise A gaussian 0 0 05 subplot 242 imshow B subplot 246 hist double B 10 C imnoise A speckle 0 05 subplot 243 imshow C subplot 247 hist double C 10 D imnoise A salt 样本噪声图像和它们的直方图 空域滤波复原均值滤波器序列统计滤波器自适应中值滤波器频域滤波复原带阻滤波器带通滤波器陷波滤波器 均值滤波器 算术均值 算术均值与几何均值滤波器适合处理高斯或均匀等随机噪声 几何均值 谐波均值 逆谐波均值 谐波均值适合处理脉冲噪声 对于 盐 噪声效果很好 但不适于 胡椒 噪声逆谐波均值的效果与Q有关 Q 0消除 胡椒 噪声Q 0消除 盐 噪声 胡椒 噪声干扰图像 盐 噪声干扰图像 Q值取值不当的滤波效果 3 3大小 Q 1 5的3 3大小 Q 1 5的逆逆谐波均值滤波器谐波均值滤波器 A imread cameraman tif An imnoise A gaussian 0 0 06 An double An figure subplot 231 imshow A title 原图 subplot 232 imshow An title 噪声图 Anmean1 imfilter An fspecial average 3 subplot 233 imshow Anmean1 title 算术均值 Anmean2 exp imfilter log An fspecial average 3 subplot 234 imshow Anmean2 title 几何均值 Q 1 5 Anmean3 imfilter An Q 1 fspecial average 3 imfilter An Q fspecial average 3 subplot 235 imshow Anmean3 title 逆谐波1 Q 1 5 Anmean4 imfilter An Q 1 fspecial average 3 imfilter An Q fspecial average 3 subplot 236 imshow Anmean4 title 逆谐波2 不同均值滤波器对高斯噪声污染图像的处理效果 不同均值滤波器对椒盐噪声污染图像的处理效果 逆谐波对分别被胡椒噪声和盐噪声污染的图像进行复原的结果 均值滤波器总结算术均值滤波器和几何均值滤波器适合于处理高斯或均匀等随机噪声谐波均值滤波器适合于处理脉冲噪声缺点 必须事先知道噪声是暗噪声还是亮噪声 以便于选择合适的Q符号 顺序统计滤波器 对于脉冲 盐和胡椒 噪声有效 中值滤波器 在相同尺寸下 比起均值滤波器引起的模糊少 最大值滤波器发现图像中亮点用于消除 胡椒 最小值滤波器发现图像中暗点用于消除 盐 中点滤波器结合了顺序统计和求平均的特点对高斯和均匀分布的噪声效果最好 修正后阿尔法均值滤波器 Alpha trimmedmeanfilter 假设在Sxy邻域内去掉g s t 中d 2个最高灰度值和d 2个最低灰度值用gr s t 表示剩余的mn d个像素 0 d mn 1d 0算术均值滤波器d mn 1 2中值滤波器 处理包括多种噪声混合情况 例如高斯噪声与椒盐噪声混合 中值滤波器 d 5 规格为5 5的修正后的阿尔法均值滤波器 图像复原的频率域滤波器带阻滤波器带通滤波器陷波滤波器最佳陷波滤波器 带阻滤波器 阻止一定频率范围内的信号通过而允许其它频率范围内的信号通过 目的在于消除或衰减傅里叶变换原点处的频段理想带阻滤波器巴特沃斯带阻滤波器高斯带阻滤波器 理想带阻滤波器 其中 W为所需的频带宽度 D0是频带中心的半径 n阶巴特沃斯带阻滤波器高斯带阻滤波器 带阻滤波器透视图 理想巴特沃斯 1阶 高斯 带通滤波器允许一定频率范围内的信号通过 而阻止其他频率范围的信号通过与带阻相反H带通 u v 1 H带阻 u v 带通滤波器不用于直接处理图像 而是用于提取图像中的周期噪声模式 陷波滤波器阻止或通过事先定义的中心频率邻域内的频率由于傅里叶变换的对称性 陷波滤波器必须以原点对称的形式出现可以有带通与带阻两种方式 分别实现允许 通过给定中心频率范围内的滤波效果 理想陷波带阻滤波器 巴特沃斯陷波带阻滤波器高斯陷波带阻滤波器 当u0 v0 0时 逆滤波 退化模型 退化的图像为原图像与退化函数的卷积再叠加噪声转换至频域 原图像的近似估计 逆滤波 退化的逆过程 常见退化模型 运动模糊相机晃动或物体快速移动空气扰动模糊穿过大气层 长时间曝光HufnagelandStanley 焦点失调模糊 均匀二维模糊 a 含噪声的模糊图像 b 用逆滤波直接恢复的结果 逆滤波的特点 优点 形式简单 适于极高信噪比条件下的图像复原问题 且降质系统的传递函数H不存在病态性质缺点计算量较大 对 若H u v 在uv平面上取零或很小 复原后的图像将无意义 需要人为校正噪声的去除可能会产生更严重的问题当退化图像的噪声较小 退化模型较为简单 且没有零点时 可以采用逆滤波进行恢复 维纳滤波 最小均方误差滤波器假设f和 均为二维随机序列 且不相关 目的 最小化结果 频域逆滤波的选择性尺度变换 约束最小二乘法复原问题令Q为f的线性算子 要设法寻找一个最优估计使下面的目标函数为最小 式中 为拉格朗日乘子 f的最佳估值 式中 1 最小二乘法滤波复原的核心是如何选择一个合适的变换矩阵Q Q的形式不同 可得到不同类型的复原方法 选用图像f和噪声n的自相关矩阵Rf和Rn表示Q就可得到维纳滤波复原方法 将f和n近似地看成是平稳随机过程 假设Rf和Rn为f和n的自相关矩阵 Rf E ffT Rn E nnT 定义QTQ R 1fRn 代入得 假设M N Sf和Sn分别为图像和噪声的功率谱 则 如果 1 系统函数Hw u v 是维纳滤波器的传递函数如果 0 系统变成单纯的去卷积滤波器 系统的传递函数即为H 1尽管 0但无噪声影响 Sn u v 0 复原系统亦为理想的逆滤波器 可以看成是维纳滤波器的一种特殊情况若 为可调整的其他参数 此时为参数化维纳滤波器 若噪声为白噪 且Sf u v 不知 最小均方恢复实例 例 原始图像如图 a 使用函数DECONVWNR对图 b 所示的无噪声模糊图像进行复原重建 观察所得结果 并将不同PSF产生的复原效果进行比较 a 原始图像 b 无噪声模糊图像原始图像及无噪声模糊图像 不同PSF产生的复原效果比较 a 使用真实的PSF复原 b 使用较 长 的PSF复原 c 使用较 陡峭 的PSF复原 图像在获取过程中 由于成像系统的非线性 飞行器的姿态变化等原因 成像后的图像与原景物图像相比 会产生比例失调 甚至扭曲 以上图像退化现象称之为几何失真有几何畸变的图像 不但视觉效果不好 而且在对图像进行定量分析时提取的形状 距离 面积等数据也不准确 几何失真校正 典型的几何失真 系统失真光学系统 电子扫描系统失真而引起的斜视畸变 枕形 桶形畸变等 都可能使图像产生几何特性失真 原图像 b 梯形失真 c 枕形失真 d 桶形失真 非系统失真从飞行器上所获得的地面图像 由于飞行器的姿态 高度和速度变化引起的不稳定与不可预测的几何失真这类畸变一般要根据航天器的跟踪资料和地面设置控制点办法来进行校正 几何畸变校正要对失真图像进行精确的几何校正通常是先确定一幅图像为基准 然后去校正另一幅图像的几何形状 第一步 图像空间坐标的变换 第二步 重新确定在校正空间各像素点的取值 空间几何坐标变换 按照一幅标准图像f x y 或一组基准点去校正另一幅几何失真图像g x y 根据两幅图像的一些已知对应点对建立起函数关系式 将失真图像的x y 坐标系变换到标准图像x y坐标系 从而实现失真图像按标准图像的几何位置校正 使f x y 中的每一像点都可在g x y 中找到对应像点 几何校正方法 h1 h2已知一般通过人工设置标志 如卫星照片通过人工设置小型平面反射镜作为标志 h1 h2未知通过控制点之间的空间对应关系建立线性或高次方程组求解坐标间的对应关系通常以三角形线性法为例讨论变换问题 校正空间像素点灰度值的确定 图像经几何位置校正后 在校正空间中各像素点的灰度值等于被校正图像对应点的灰度值 一般校正后的图像某些像素点可能分布不均匀 不会恰好落在坐标点上 因此常采用内插法来求得这些像素点的灰度值 经常使用的方法有 最近邻点法双线性插值法三次卷积法 精度最高 但计算量也较大 最近邻点法取与像素点相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论