




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时函数的表示方法学 习 目 标核 心 素 养1.掌握函数的三种表示方法:解析法、图像法、列表法(重点)2会根据不同的需要选择恰当的方法表示函数(难点)3理解分段函数的概念,会求分段函数的函数值,能画出分段函数的图像(重点,难点)4能在实际问题中选择恰当的方法表示两变量之间的函数关系,并能解决有关问题(重点、难点)1.通过函数表示的图像法培养直观想象素养2通过函数解析式的求法培养运算素养3利用函数解决实际问题,培养数学建模素养.1函数的图像(1)定义:将函数yf(x),xA中的自变量x和对应的函数值y,分别看成平面直角坐标系中点的横坐标与纵坐标,则满足条件的点(x,y)组成的集合F称为函数的图像,即F(x,y)|yf(x),xA(2)F是函数yf(x)的图像,必经满足下列两条图像上任意一点的坐标(x,y)都满足函数关系yf(x);满足函数关系yf(x)的点(x,y)都在函数图像F上2函数的表示法思考1:任何一个函数都可以用解析法、列表法、图像法三种形式表示吗?提示:不一定并不是所有的函数都可以用解析式表示,不仅如此,图像法也不适用于所有函数,如D(x)列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段3分段函数如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数思考2:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数1已知函数f(x)由下表给出,则f(3)等于()x1x222x4f(x)123A.1B2C3 D不存在C当2x4时,f(x)3,f(3)3.2二次函数的图像的顶点为(0,1),对称轴为y轴,则二次函数的解析式可以为()Ayx21 Byx21Cy4x216 Dy4x216B把点(0,1)代入四个选项可知,只有B正确3下列给出的式子是分段函数的是()f(x)f(x)f(x)f(x)A BC DB结合分段函数的定义可知是分段函数,中不同对应关系的定义域有重叠部分,故选B.4已知函数yf(x)的图像如图所示,则其定义域是_2,3由图像可知f(x)的定义域为2,3函数的三种表示方法【例1】某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图像法、解析法表示出来解列表法如下:x(台)12345y(元)3 0006 0009 00012 00015 000x(台)678910y(元)18 00021 00024 00027 00030 000图像法:如图所示解析法:y3 000x,x1,2,3,10列表法、图像法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:解析法必须注明函数的定义域;列表法中选取的自变量要有代表性,应能反映定义域的特征;图像法中要注意是否连线.1若集合Ax|0x2,By|0y3,则给出的下列图形表示为定义在A上的函数图像的是()A B C D(2)由下表给出函数yf(x),则f(f(1)等于()x12345y45321A.1B2C4 D5(1)D(2)B(1)A中的对应不满足函数的存在性,即存在xA,但B中无与之对应的y;B、C均不满足函数的唯一性,只有D正确(2)由题意可知,f(1)4,f(4)2,f(f(1)f(4)2,故选B.函数解析式的求法【例2】(1)已知f(1)x2,求f(x)的解析式;(2)已知函数f(x)是一次函数,若f(f(x)4x8,求f(x)的解析式;(3)如图所示,已知底角为45的等腰梯形ABCD,底边BC长为7 cm,腰长为2 cm,当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BFx,试写出左边部分的面积y关于x的函数解析式思路点拨(1)用换元法或配凑法求解;(2)用待定系数法求解;(3)可按点E所在的位置分E在线段AB,E在线段AD及E在线段CD三类分别求解解(1)法一(换元法):令t1,则t1,x(t1)2,代入原式有f(t)(t1)22(t1)t24t3,f(x)x24x3(x1)法二(配凑法):f(1)x21443(1)24(1)3,因为11,所以f(x)x24x3(x1)(2)设f(x)axb(a0),则f(f(x)f(axb)a(axb)ba2xabb.又f(f(x)4x8,所以a2xabb4x8,即解得或所以f(x)2x或f(x)2x8.(3)过点A,D分别作AGBC,DHBC,垂足分别是G,H.因为四边形ABCD是等腰梯形,底角为45,AB2 cm,所以BGAGDHHC2 cm,又BC7 cm,所以ADGH3 cm.当点F在BG上,即x0,2时,yx2;当点F在GH上,即x(2,5时,y22x2;当点F在HC上,即x(5,7时,yS五边形ABFEDS梯形ABCDSRtCEF(73)2(7x)2(x7)210.综合,得函数的解析式为y图像如图所示求函数解析式的常用方法(1)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(2)换元法:设tg(x),解出x,代入f(g(x),求f(t)的解析式即可.(3)配凑法:对f(g(x)的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可.(4)方程组法(或消元法):当同一个对应关系中的两个元素之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:(1)应用换元法求函数解析式时,务必保证函数在换元前后的等价性.(2)在实际问题背景下,自变量取值区间不同,对应关系也不同,此时需要用分段函数表示.2已知函数f(x1)3x2,则f(x)的解析式是()Af(x)3x1Bf(x)3x1Cf(x)3x2 Df(x)3x4A令x1t,则xt1,f(t)3(t1)23t1.f(x)3x1.3已知函数f(x)对于任意的x都有f(x)2f(x)12x,则f(x)_.x1由题意,在f(x)2f(x)12x中,以x代替x可得f(x)2f(x)12x,联立可得消去f(x)可得f(x)x1.函数的图像及应用【例3】(1)作出函数y,x2,)的图像并求出其值域(2)某市“招手即停”公共汽车的票价按下列规则制定:5公里以内(含5公里),票价2元;5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算)如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图像思路点拨(1)列表描点连结;(2)分段函数的图像需要在同一坐标系中分段画出解(1)列表x2345y1当x2,)时,图像是反比例函数y的一部分,观察图像可知其值域为(0,1(2)设票价为y元,里程为x公里,定义域为(0,20由题意得函数的解析式如下:y函数图像如图所示:描点法作函数图像的三个关注点(1)画函数图像时首先关注函数的定义域,即在定义域内作图.(2)图像是实线或实点,定义域外的部分有时可用虚线来衬托整个图像.(3)要标出某些关键点,例如图像的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.提醒:(1)函数图像既可以是连续的曲线,也可以是直线、折线、离散的点等.(2)分段函数的图像是在同一个直角坐标系内分别作出各段的图像,在作图时要特别注意接点处点的虚实,保证不重不漏.4已知函数f(x)1(2x2)(1)用分段函数的形式表示f(x);(2)画出f(x)的图像;(3)若f(a)2,求实数a的值解(1)当0x2时,f(x)11,当2x0时,f(x)11x,f(x)(2)函数f(x)的图像如图所示(3)f(a)2由函数图像可知a(2,0),1a2,即a1.1函数有三种常用的表示方法,可以适时的选择,以最佳的方式表示函数,解析式后不注明定义域即可视为该函数的定义域为使此解析式有意义的实数集R或R的子集2作函数图像必须要让作出的图像反映出图像的伸展方向,与x轴、y轴有无交点,图像有无对称性,并标明特殊点3分段函数是一个函数,而不是几个函数4分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.1思考辨析(1)任何一个函数都可以用解析法表示()(2)函数的图像一定是定义区间上一条连续不断的曲线()(3)分段函数由几个函数构成()(4)函数f(x)是分段函数()答案(1)(2)(3)(4)2设函数f(x)则f(f(3)()A.B3C. D.Df(3)1,f(f(3)1.3函数yf(x)的图像如图所示,则其解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025考研金融学考试题及答案
- 2025年公路工程助理试验检测师资格考试(道路工程)全真模拟试题及答案三
- 锚索专项施工方案(3篇)
- 冲刺高考班级活动方案策划(3篇)
- 期中模拟数学试卷
- 六一美术画展活动策划方案(3篇)
- 陪护服务合同范本
- 莆田初二上册数学试卷
- 七年级 下 数学试卷
- 承包钢材合同范本
- 滁州市珠龙广卫绢云母粉厂滁州市南谯区将军山绢云母矿1万吨-年露天采矿工程项目环境影响报告书
- 人民医院心血管外科临床技术操作规范2023版
- 2023年江苏小高考历史试卷
- 主要组织相容性复合体及其编码分子
- 优化物理教学策略的思考(黄恕伯)
- 中国移动-安全-L1,2,3(珍藏版)
- 2017年全国大学生数学建模A题
- 2023年专升本计算机题库含答案专升本计算机真题
- scratch3.0编程校本课程
- GB/T 1685-2008硫化橡胶或热塑性橡胶在常温和高温下压缩应力松弛的测定
- GB/T 14825-1993农药可湿性粉剂悬浮率测定方法
评论
0/150
提交评论