十字相乘法进行因式分解(详案)_第1页
十字相乘法进行因式分解(详案)_第2页
十字相乘法进行因式分解(详案)_第3页
十字相乘法进行因式分解(详案)_第4页
十字相乘法进行因式分解(详案)_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

十字相乘法进行因式分解【基础知识精讲】( 1)理解二次三项式的意义;( 2)理解十字相乘法的根据;( 3)能用十字相乘法分解二次三项式;( 4)重点是掌握十字相乘法,难点是首项系数不为1 的二次三项式的十字相乘法【重点难点解析】1. 二次三项式精品资料多项式ax 2bxc ,称为字母x 的二次三项式,其中ax 2 称为二次项, bx 为一次项, c 为常数项例2如, x22 x3 和 x5 x6 都是关于x 的二次三项式在多项式x26 xy8 y2 中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于 y 的二次三项式在多项式2 a 2b 27ab3 中,把 ab 看作一个整体, 即 2(ab) 27(ab)3 ,就是关于 ab 的二次三项式 同样,多项式( xy) 27( xy)12 ,把 x y 看作一个整体,就是关于x y 的二次三项式十字相乘法是适用于二次三项式的因式分解的方法2. 十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax b)(cx d) 竖式乘法法则它的一般规律是:( 1)对于二次项系数为1 的二次三项式x2pxq ,如果能把常数项q 分解成两个因数a, b 的积,并且a b 为一次项系数p,那么它就可以运用公式x2(ab)xab(xa )( xb)分解因式这种方法的特征是“拆常数项,凑一次项”公式中的x 可以表示单项式,也可以表示多项式, 当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同( 2)对于二次项系数不是1 的二次三项式ax 2bxc (a, b, c 都是整数且a0) 来说,如果存在四个整数a1, a2 ,c1 , c2 ,使 a1a2a , c1c2c ,且a1c2a2c1b ,那么 ax 2bxca a x2( a1c2a 2c1 )xc1c2(a1xc1 )( a2 xc2 ) 它的特征是“拆两头,凑中间”,1 2这里要确定四个常数,分析和尝试都要比首项系数是 1 的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定学习时要注意符号的规律为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验 证 交 叉 相 乘 的 两 个 积 的 和 是 否 等 于 一 次 项 系 数 ; 二 是 由 十 字 相 乘 写 出 的 因 式 漏 写 字 母 如 :5 x26 xy8 y 2( x2)( 5 x4)3. 因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组 分解法 对于一个还能继续分解的多项式因式仍然用这一步骤反复进行以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”【典型热点考题】例 1把下列各式分解因式:2( 1 ) x2x15 ;(2 ) x 25 xy6 y 2 点悟:(1 )常数项 15 可分为 3 ( 5) ,且 3 ( 5) 2 恰为一次项系数;( 2)将 y 看作常数,转化为关于x 的二次三项式,常数项6 y2 可分为 ( 2y)( 3 y),而( 2y) ( 3y) (5 y)恰为一次项系数2解:(1 ) x2x15( x3)( x5) ;( 2) x25 xy6 y2( x2 y)( x3 y) 例 2把下列各式分解因式:2( 1) 2x5x3 ;( 2) 3 x28x3 点悟: 我们要把多项式ax 2bxc 分解成形如(axc )(axc ) 的形式,这里a aa , c cc 而11221 21 2a1c2a2 c1b 解:(1 ) 2 x25 x3(2 x1)( x3) ;2( 2) 3x8x3( 3x1 )( x3 ) 点拨: 二次项系数不等于1 的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性例 3把下列各式分解因式:( 1) x410x29 ;( 2) 7( xy) 35( xy) 22(xy) ;2( 3) (a8a)222( a 28a)120 点悟:( 1 )把x2 看作一整体,从而转化为关于x2 的二次三项式;( 2)提取公因式 (x y)后,原式可转化为关于(x y) 的二次三项式;( 3)以(a 28a) 为整体,转化为关于2( a8a) 的二次三项式4解:(1 )x10 x29( x21)( x29) (x 1)( x 1)( x3)( x3) ( 2)7 (xy)35( xy)22( xy)(xy) 7( xy) 25( xy)2 (x y)(x y) 17( x y) 2 (x y)(x y 1)(7 x 7 y 2) ( 3)(a28a) 222(a 28a)120(a 28a12)( a 28a10)(a2)( a6)( a 28a10)点拨: 要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止例 4分解因式:( x22 x3)( x22 x24)90 点悟: 把 x22x 看作一个变量,利用换元法解之解: 设 x22 xy ,则原式 (y 3)( y 24) 90y227 y162 (y 18)( y9)(x22 x18)( x22 x9) 点拨: 本题中将x22 x 视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果此外,2y27 y162( y18)( y9) 一步,我们用了“十字相乘法”进行分解例 5分解因式6 x45 x338 x25 x6 点悟: 可考虑换元法及变形降次来解之解: 原式x2 6( x 212 )5( xx1)38xx2 6(x令 x1 x1 ) 2xy ,则5( x1 )50 ,x原式x2 ( 6y 25 y50)x2 ( 2 y5)( 3y10)x2 (2x25)(3xx310)x(2 x25 x2)(3 x210 x3)(x2)( 2x1)( x3)( 3x1) 点拨: 本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱但是, 品味之余应想到对换元后得出的结论一定要“还原”, 这是一个重要环节例 6分解因式 x22 xyy 25 x5 y6 点悟: 方法 1 :依次按三项,两项,一项分为三组,转化为关于( x y)的二次三项式方法 2:把字母 y 看作是常数,转化为关于x 的二次三项式解法 1:x22 xyy25 x5 y6( x22 xyy2 )(5x5 y)6( xy) 25( xy)6( xy1)( xy6) 解法 2:x22 xyy25 x5 y6x2(2 y5) xy25 y62x(2 y5) x( y6)( y1) x( y6 )x( y1 ) (x y 6)( x y 1) 例 7分解因式: ca (c a) bc(b c) ab(a b)点悟: 先将前面的两个括号展开,再将展开的部分重新分组解: ca(c a) bc(b c) ab(ab)ac2a2 cb2 cbc 2ab(ab)c2 (ab)c(a 2b 2 )ab(ab)c2 (ab)c(ab)( ab)ab( ab)2(ab) cc( ab)ab (ab)( ca)( c b)点拨: 因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组此题展开四项后,根据字母c 的次数分组,出现了含a b 的因式,从而能提公因式随后又出现了关于c 的二次三项式能再次分解例 8已知 x46x2x12 有一个因式是x2ax4 ,求 a 值和这个多项式的其他因式点悟: 因为 x46x2x12 是四次多项式,有一个因式是x2ax4 ,根据多项式的乘法原则可知道另一个因式是x 2bx3 ( a、b 是待定常数) ,故有 x46 x 2x12(x 2ax4)( x2bx3) 根据此恒等关系式,可求出a, b 的值解: 设另一个多项式为x2bx3 ,则x46 x2x12(x2ax4)( x2bx3)x4(ab) x3(34ab) x2(3a4b) x12 ,4x46 x2x12 与 x(ab)x3(34ab) x2(3a4b) x12 是同一个多项式,所以其对应项系数分别相等即有由、解得,a 1, b 1,代入,等式成立 a 1 ,另一个因式为x2x3 点拨: 这种方法称为待定系数法,是很有用的方法待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用希望读者不可轻视【易错例题分析】例 9 分解因式:5a2 b223aby10 y2 错解: 10 5 ( 2) , 5 1 5 , 5 5 1(2) 23 , 原式 (5 ab 5 y)( 2 ab 5 y)警示: 错在没有掌握十字相乘法的含义和步骤正解: 51 5, 10 5 ( 2) ,5 5 1(2) 23 原式 (ab5 y)(5 ab2 y)【同步练习】一、选择题1. 如果x2pxq( xa )( xb) ,那么 p 等于()aabb a bc abd (a b)2. 如果x2(ab)x5bx2x30 ,则 b 为()a5b 6c 5d 63. 多项式 x 23 xa 可分解为 (x 5)( x b),则 a, b 的值分别为()a10 和 2b 10 和 2c 10 和 2d 10 和 24. 不能用十字相乘法分解的是()a. x2x2b. 3 x210 x23 xc. 4x2x2d. 5x26xy8y 25. 分解结果等于(x y 4)(2 x2y 5) 的多项式是()a. 2( xb. (2 xy) 22 y)213(x13( xy)20y)20c. 2( xy) 213(xy)20d. 2( xy) 29( xy)2026. 将下述多项式分解后,有相同因式x1 的多项式有() x27 x6 ; 3x2x1 ; x25 x6 ; 4 x25 x9 ; 15x223x8 ; x411x212a2 个b 3 个c 4 个d 5 个二、填空题27. x3 x10 8. m25m6(ma)( m b)a , b 9 2 x25 x3(x 3)( ) 10 x2 2 y2(x y)( ) 211 an a( ) m( ) 2 12 当 k 时,多项式3x 27 xk有一个因式为( ) 13 若 x y6,17xy,则代数式36x3 y2 x2 y 2xy 3的值为 三、解答题14 把下列各式分解因式:( 1) x47 x26 ;( 2 ) x45x236 ;6( 3) 4x465x2 y 216 y4 ;( 4) a 67 a3b 38b6 ;( 5) 6a 45a 34a 2;( 6 ) 4 a37 a4b 29a 2b 4 2215 把下列各式分解因式:( 1) (x23)24 x;( 2 ) x ( x2) 29 ;( 3) (3x22 x1)2( 2x23x3)2 ;( 4) (x2x) 217( x2x)60 ;2( 5) (x2 x)27 (x22 x)8 ;( 6) (2ab) 214( 2ab)48 16 把下列各式分解因式:( 1) (ab) x22axab ;( 2) x2( p2q 2 ) xpq( pq)( pq) ;( 3) x22 xy3 y22 x10 y8 ;2( 4) 4x4 xy3 y24 x10 y3 ;( 5) (x23 x2)( x27 x12)120 ;( 6) (x2xyy2 )( x 2xy2 y2 )12 y4 17 已知2 x37 x 219 x60 有因式 2x 5 ,把它分解因式18 已知 xy 2 , xy a 4,x3y326 ,求 a 的值参考答案【同步练习】1 d2 b3 d4c5 a6 c7 (x5)( x2)81 或 6, 6 或 192 x 1n 210 xy, x2y1124mn, a,2m12 2 , 3x 1 或 x 213 1714 ( 1 ) 原式( x21)( x26)(x1)( x1)( x 26)( 2) 原式( x 29)( x24)( x3)( x3)( x24)( 3) 原式( 4 x2y2 )( x216 y2 )(2 xy)( 2 xy)( x4 y)( x4 y)( 4) 原式( a38b3 )( a 3b 3 )(a2b)( a 22ab4b 2 )( ab )( a 2abb 2 )( 5) 原式a 2 (6 a 25a4)2a (2a1)( 3a4)( 6) 原式a 2 (4a 437a 2b 29b4 )a2 (4a 2b 2 )( a29b2 )a2 (2ab)( 2ab)(a3b )(a3b)15 ( 1 ) 原式( x232 x)( x232 x)(x3)( x1)( x3)( x1)( 2)原式 x( x2)3 x( x2)3(x22 x3)( x22 x3)(x3)( x1)( x22 x3)( 3)原式(3 x22 x12 x23 x3)(3x22x12 x23 x3)2(5 x5 x4)( x2)( x1)( 4) 原式( x 2x12)( x2x5)( x4)( x3)( x 2x5)( 5) 原式( x 22 x8)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论