




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1 4空间向量的正交分解及其坐标表示 1 理解空间向量基本定理 并能用基本定理解决一些几何问题 2 理解基底 基向量及向量的线性组合的概念 3 掌握空间向量的坐标表示 能在适当的坐标系中写出向量的坐标 1 空间向量基本定理 重点 2 用基底表示已知向量 难点 3 在不同坐标系中向量坐标的相对性 易错点 1 平面向量基本定理的内容是 如果e1 e2是同一平面内的两个不共线向量 那么对于这一平面内的任意向量a 有且只有一对实数 1 2 使 不共面的向量e1 e2叫做这一平面内所有向量的一组 2 在平面内 把一个向量分解成两个互相垂直的向量 叫做把向量 a 1e1 2e2 基底 正交分解 7 4 1 空间向量基本定理定理 如果三个向量a b c 那么对于空间任一向量p 存在有序实数组 x y z 使得p 其中 a b c 叫做空间的一个基底 都叫做基向量 不共面 xa yb zc a b c 2 空间向量的正交分解及其坐标表示 两两垂直 公共点 平移 起点 xe1 ye2 ze3 p x y z 1 已知a b c是不共面的三个向量 则能构成一个基底的一组向量是 a 2a a b a 2bb 2b b a b 2ac a 2b b cd c a c a c 答案 c 答案 c 答案 1 1 1 1 0 1 以下四个命题中正确的是 a 空间的任何一个向量都可用三个给定向量表示b 若 a b c 为空间的一个基底 则a b c全不是零向量c 若向量a b 则a b与任何一个向量都不能构成空间的一个基底d 任何三个不共线的向量都可构成空间的一个基底 根据空间基底的定义逐个选项判断 解题过程 答案 b 题后感悟 1 空间中任意三个不共面的向量都可以作为空间向量的一个基底 2 由于0可视为与任意一个非零向量共线 与任意两个非零向量共面 所以三个向量不共面 就隐含着它们都不是0 3 一个基底是指一个向量组 一个基向量是指基底中的某一个向量 二者是相关联的不同概念 1 如果向量a b与任何向量都不能构成空间的一个基底 则 a a与b共线b a与b同向c a与b反向d a与b共面解析 由空间向量基本定理可知只有不共线的两向量才可以做基底 b c都是a的一种情况 空间中任两个向量都是共面的 故d错 答案 a 题后感悟 判断给出的某一向量组中的三个向量能否作为基底 关键是要判断它们是否共面 如果从正面难以入手 常用反证法或是一些常见的几何图形帮助我们进行判断 2 设x a b y b c z c a 且 a b c 是空间的一个基底 给出下列向量组 a b x a b y x y z a x y x y a b c 其中可以作为空间基底的向量组有 a 1个b 2个c 3个d 4个 答案 c 由题目可获取以下主要信息 a b c 是一个基底 空间四边形oabc中 g h分别是 abc obc的重心 解答本题可利用重心的性质 再结合图形进而求得结果 1 对基底的理解 1 空间任意三个不共面的向量都可构成空间的一个基底 基底选定后 空间的所有向量均可由基底惟一表示 2 由于0与任意一个非零向量共线 与任意两个非零向量共面 所以若三个向量不共面 就说明它们都不是0 3 空间的一个基底是指一个向量组 是由三个不共面的空间向量构成 一个基向量是指基底中的某个向量 二者是相关联的不同概念 2 怎样正确理解空间向量基本定理 1 空间向量基本定理表明 用空间三个不共面已知向量组 a b c 可以线性表示出空间任意一个向量 而且表示的结果是惟一的 2 空间中的基底是不惟一的 空间中任意三个不共面向量均可作为空间向量的基底 3 如何理解空间向量与平面向量的正交分解 空间向量的正交分解与平面向量的正交分解类似 都需要事先提供一组基底 空间向量表示为p xa yb zc的形式 平面向量表示为p xa yb的形式 4 特殊向量的坐标表示 1 当向量a平行于x轴时 纵坐标 竖坐标都为0 即a x 0 0 2 当向量a平行于y轴时 横坐标 竖坐标都为0 即a 0 y 0 3 当向量a平行于z轴时 横坐标 纵坐标都为0 即a 0 0 z 4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字笔算课件
- 汉字的形体课件
- 汉字添彩显个性课件
- 辽宁省沈阳市名校2026届高三上学期8月诊断考试语文试卷(含答案)
- 汽车产业发展趋势与创新区域分析
- 旅游协议书汇编15篇
- 软件开发行业技术应用方案
- 美容美发行业美容美发新技术应用
- 汉字书法课件模板楷书崖
- 军事理论-国家安全环境强化版知到智慧树答案
- 枣庄学院《图学基础与计算机绘图》2024-2025学年第一学期期末试卷
- 2025-2030城市矿产开发利用政策支持与商业模式创新报告
- 产品线库存管理与补货预测系统
- 2025年高考(山东卷)历史真题及答案
- 医学减重管理体系
- 初中历史教师培训讲座
- 2025年新营运损失费赔偿协议书
- 手术部运用PDCA循环提高手术室术后设备器材定位归还率品管圈
- 传统丧事流程安排方案
- 第三课第三框法国大革命和拿破仑帝国课件
- JJF 2256-2025体重秤校准规范
评论
0/150
提交评论