二元一次方程(2014年中考试题汇编)_第1页
二元一次方程(2014年中考试题汇编)_第2页
二元一次方程(2014年中考试题汇编)_第3页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.;.一、选择题二元一次方程 (组)及其应用1. ( 2014?黑龙江龙东 , 第 19 题 3 分)今年学校举行足球联赛,共赛17 轮(即每队均需参赛 17 场),记分办法是: 胜 1 场得 3 分,平 1 场得 1 分,负 1 场得 0 分在这次足球比赛中, 小虎足球队得16 分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()a 2 种b 3 种c 4 种d 5 种考点:二元一次方程的应用分析:依题意建立方程组,解方程组从而用k(整数)表示负场数z=,因为 z 为整数,即 2k+3 为 35 的正约分,据此求得z、k 的值解答:解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得,把 代入 得, 解得 z=( k 为整数)又 z 为正整数,当 k=1 时, z=7 ; 当 k=2 时 , z=5 ; 当 k=16 时 , z=1综上所述,小虎足球队所负场数的情况有3 种情况故选: b点评:本题考查了二元一次方程组的应用解答方程组是个难点,用了换元法2. ( 2014?黔南州,第3 题 4 分)二元一次方程组的解是()a b cd考点 :解 二元一次方程组 专题 :计 算题分析:方程组利用加减消元法求出解即可 解答:解:, + 得 : 2x=2, 即 x=1 , 得: 2y=4 ,即 y=2 , 则方程组的解为故 选 b点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法2 (2014 年贵州安顺,第6 题 3 分)已知等腰三角形的两边长分別为a、b,且 a、b 满足2+( 2a+3b 13) =0,则此等腰三角形的周长为()a 7 或 8b 6 或 1oc 6 或 7d 7 或 10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系分析:先根据非负数的性质求出a, b 的值,再分两种情况确定第三边的长,从而得出三角形的周长=0,解答:解: |2a 3b+5|+( 2a+3b 13) 2,解得,当 a 为底时,三角形的三边长为 2, 3, 3,则周长为 8; 当 b 为底时,三角形的三边长为 2, 2, 3,则周长为 7; 综上所述此等腰三角形的周长为 7 或 8故 选 a 点评: 本题考查了非负数的性质、 等腰三角形的性质以及解二元一次方程组, 是基础知识要熟练掌握3二、填空题1. (2014?黑龙江龙东 , 第 7 题 3 分)小明带7 元钱去买中性笔和橡皮(两种文具都买),中性笔每支2 元,橡皮每块1 元,那么中性笔能买1 或 2 或 3(每答对1 个给 1 分,多答或含有错误答案不得分)支考点:二元一次方程的应用分析:根据小明所带的总钱数以及中性笔与橡皮的价格,分别得出符合题意的答案解答:解:小明带7 元钱去买中性笔和橡皮(两种文具都买),中性笔每支2 元,橡皮每块 1 元,当买中性笔1 只,则可以买橡皮5 只,当买中性笔2 只,则可以买橡皮3 只,当买中性笔3 只,则可以买橡皮1 只,故答案为: 1 或 2 或 3点评:此题主要考查了二次元一次方程的应用,正确分类讨论是解题关键2. ( 2014?宁夏,第12 题 3 分)若 2ab=5 , a 2b=4,则 ab 的值为3考点 :解 二元一次方程组专题 :计 算题分析:已知两等式左右两边相加,变形即可得到a b 的值解答:解:将 2a b=5 , a2b=4,相加得: 2ab+a 2b=9,即 3a 3b=9,解得: a b=3故答案为: 3点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法3( 2014?重庆 a , 第 13 题 4 分)方程组的解是考点:解二元一次方程组 专题:计算题分析:方程组利用代入消元法求出解即可 解答:解:,将 代入 得: y=2 , 则方程组的解为,故答案为:点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法4(2014?攀枝花,第13 题 4 分) 已知 x,y 满足方程组,则 x y 的值是 1考点:解二元一次方程组专题:计算题分析:将方程组两方程相减即可求出x y 的值解答:解:,得: x y= 1故答案为:1点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法5三、解答题1. ( 2014?海南 , 第 21 题 8 分)海南五月瓜果飘香,某超市出售的“无核荔枝 ”和“鸡蛋芒果 ” 单价分别为每千克26 元和 22 元,李叔叔购买这两种水果共30 千克,共花了708 元请问李叔叔购买这两种水果各多少千克?考点 :二 元一次方程组的应用;一元一次方程的应用 专题 :应 用题分析:设李叔叔购买 “无核荔枝 ”x 千克,购买 “鸡蛋芒果 ”y 千克,根据总质量为30 千克,总花费为708 元,可得出方程组,解出即可解答:解:设李叔叔购买“无核荔枝 ”x 千克,购买 “鸡蛋芒果 ”y 千克,由题意,得:,解得:答:李叔叔购买“无核荔枝 ”12 千克,购买 “鸡蛋芒果 ”18 千克点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解2. ( 2014?湖南衡阳 , 第 25 题 8 分)某班组织班团活动,班委会准备用15 元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2 元/本,中性笔1 元/ 支,且每种奖品至少买1 件(1) 若设购买笔记本x 本,中性笔y 支,写出y 与 x 之间的关系式;(2) 有多少种购买方案?请列举所有可能的结果;(3) 从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率考点 :列表法与树状图法;二元一次方程的应用分析:(1)首先由题意可得:2x+y=15 ,继而求得y 与 x 之间的关系式;(2) 根据每种奖品至少买1 件,即可求得所有可能的结果;(3) 由买到的中性笔与笔记本数量相等的只有1 种情况,直接利用概率公式求解即可求得答案解答:解:( 1)根据题意得:2x+y=15 ,y=15 2x;(2)购买方案: x=1 , y=13 ; x=2 , y=11 ,x=3 , y=9 ;x=4 , y=7 ; x=5 , y=5 ; x=6 , y=3 , x=7 , y=1 ;共有 7 种购买方案;(3)买到的中性笔与笔记本数量相等的只有1 种情况,买到的中性笔与笔记本数量相等的概率为:点评:本题考查了列举法求概率的知识注意用到的知识点为:概率=所求情况数与总情况数之比3. ( 2014?湖南永州 , 第 18 题 6 分)解方程组: 考点:解二元一次方程组.专题:计算题分析:方程组利用代入消元法求出解即可解答:解:将代入得:5x+2x 3=11,解得: x=2 ,将 x=2 代入得: y=1 ,则方程组的解为点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法4. (2014 衡阳,第 25 题 8 分)某班组织活动,班委会准备用15 元钱全部用来 购买笔记本和中性笔两种奖品。已知笔记本2 元/ 本,中性笔元 / 支,且每种奖品至少买一件。若设购买笔记本x 本,中性笔y 支,写出 y 与 x 之间的关系式;有多少种购买方案?请列举所有可能的结果;从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率。【考点】二元一次方程的应用、列举法或图表法、概率=所求 情况 数/ 总情况数【解析】由题意知2xy15 , y 与 x 之间的关系式为;在 2 xy15 中, 2x为偶数, 15 为奇数,y 必为奇数,每种奖品至少买一件,x1 ,y1 ,奇数 y 只能取 1、3、5、7、9、11、13这七个数共有七种购买方案,如右图所示;买到的中性笔与笔记本数量相等的购买方案只有种(上表所示的方案三), 共有 7 种购买方案买到的中性笔与笔记本数量相等的概率为1 。7【答案】 y=15-2x共有七种购买方案,如图 17【点评】本题 考查 了 二元 一次 方程 的应 用,列 举法 求不 定方 程的解 ,列举法 求概 率的 知识 注意 用到 的知 识点 为:概 率=所求情 况数 与总 情况数之 比5(2014 ?江西, 第 16 题 6 分) 小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20 支笔和 2 和盒笔芯,用了 56 元;小丽买了 2 支笔和 3 盒笔芯,仅用了 28 元。求每支中性笔和每盒笔芯的价格。【答案】中性笔 2 元/ 支,笔芯8 元/ 盒。【考点】二元一次方程组的应用,准确找出数量之间的相等关系并能用代数式表示【分析】设每支中性笔的价格为x 元, 每盒笔芯的价格为y 元, 根据单价数量=总价,建立方程组,求出其解即可【解答】解:设每支中性笔的价格为x 元,每盒笔芯的价格为y 元,由题意,得20x2y56,2x3y28.x 2,解得,y=8.答:每支中性笔的价格为2 元,每盒笔芯的价格为8 元6( 2014?四川广安 , 第 22 题 8 分)广安某水果点计划购进甲、乙两种新出产的水果共 140千克,这两种水果的进价、售价如表所示:进价(元 /千克) 售价(元 /千克)甲种58乙种913(1) 若该水果店预计进货款为1000 元,则这两种水果各购进多少千克?(2) 若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3 倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?考点 :一 次函数的应用;二元一次方程组的应用分析:( 1)根据计划购进甲、乙两种新出产的水果共140 千克,进而利用该水果店预计进货款为 1000 元,得出等式求出即可;( 2)利用两种水果每千克的利润,进而表示出总利润,进而利用一次函数增减性得出即可解答:解 :( 1)设购进甲种水果x 千克,则购进乙种水果(140 x)千克,根据题意可得: 5x+9 ( 140 x) =1000 ,解得: x=65 , 140x=75 (千克),答:购进甲种水果65 千克,乙种水果75 千克;( 2)由图表可得:甲种水果每千克利润为:3 元,乙种水果每千克利润为:4 元, 设总利润为w,由题意可得出:w=3x+4 ( 140 x) = x+560 ,故 w 随 x 的增大而减小,则x 越小 w 越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3 倍, 140x 3x,解得: x35,当 x=35 时, w 最大 = 35+560=525 (元),故 140 35=105 (kg )答:当甲购进35 千克,乙种水果105 千克时,此时利润最大为525 元 点评:主要考查了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题关键7( 2014?湖北黄冈 ,第 17 题 6 分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机已知购买2 块电子白板比购买3 台投影机多4000 元,购买4 块电子白板和3 台投影机共需44000 元问购买一块电子白板和一台投影机各需要多少元?考点 :二 元一次方程组的应用分析:设购买 1 块电子白板需要x 元,一台投影机需要y 元,根据 买 2 块电子白板的钱 买 3 台投影机的钱=4000 元, 购买 4 块电子白板的费用+3 台投影机的费用=44000 元,列出方程组,求解即可解答:解:设购买1 块电子白板需要x 元,一台投影机需要y 元,由题意得:,解得:答:购买一块电子白板需要8000 元,一台投影机需要4000 元点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系, 列出方程组8. ( 2014?湖北黄石 ,第 23 题 8 分)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后, 小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表(假设不同种植户种植的同种花卉每亩卖花平均收 入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲5333500乙3743500(1) 试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2) 甲、乙种植户计划合租 30 亩地用来种植玫瑰花和蓑衣草, 根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花卉的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15 亩的部分,每亩补贴 100 元;超过 15亩但不超过 20 亩的部分, 每亩补贴 200 元;超过 20 亩的部分每亩补贴 300 元为了使总收入不低于 127500 元,则他们有几种种植方案?考点:一元一次不等式组的应用;二元一次方程组的应用专题:应用题分析:(1)设玫瑰花, 蓑衣草的亩平均收入分别为x,y 元,根据表格中的等量关系列出方程组求解;(2)设种植玫瑰花m 亩,则种植蓑衣草面积为(30 m)亩,根据玫瑰花的种植面积大于蓑衣草的种植面积,可得m 15,然后分段讨论求解解答:解:( 1)设玫瑰花,蓑衣草的亩平均收入分别为x, y 元,依题意得:,解得:答:玫瑰花每亩的收入为4000 元,蓑衣草每亩的平均收入是4500 元(2)设种植玫瑰花m 亩,则种植蓑衣草面积为(30 m)亩,依题意得: m30 m,解得: m 15,当 15 m20 时,总收入w=4000m+4500 ( 30 m) +15 100+( m 15)200127500,解得: 15 m20,当 m 20 时,总收入w=4000m+4500 ( 30m) 15100+5200+(m 20) 300127500,解得: m20,(不合题意) ,综上所述,种植方案如下: 种植类型种植面积(亩)方案一方案二 方案三方案四方案五玫瑰花1617181920蓑衣草1413121110点评:本题考查了二元一次方程组的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到等量关系与不等关系9( 2014?湖北黄石 ,第 20 题 8 分)解方程:考点:高次方程分析:先把方程组的第二个方程进行变形,再代入方程组中的第一个方程,即可求出x, 把 x 的值代入方程组的第二个方程,即可求出y解答:解:,由方程x 2y=2得: 4y2=15x2 60x+60 ( 3),将( 3)代入方程5x24y2=20,化简得: x2 6x+8=0 ,解此方程得:x=2 或 x=4 ,代入x 2y=2得: y=0 或,即原方程组的解为或点评:本题考查了解高次方程的应用,解此题的关键是能得出关于x 定的一元二次方程, 题目比较好,难度适中10( 2014?攀枝花,第22 题 8 分)为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台?时)挖掘土石方量(单位:m3/台?时)甲型挖掘机10060乙型挖掘机12080(1) 若租用甲、乙两种型号的挖掘机共8 台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2) 如果每小时支付的租金不超过850 元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?考点:一元一次不等式的应用;二元一次方程组的应用分析:( 1)设甲、乙两种型号的挖掘机各需x 台、 y 台等量关系:甲、乙两种型号的挖掘机共 8 台;每小时挖掘土石方540m3;( 2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案 解答:解 :( 1)设甲、乙两种型号的挖掘机各需x 台、 y 台依题意得:,解得答:甲、乙两种型号的挖掘机各需5 台、 3 台;( 2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机 依题意得: 60m+80n=540 ,化简得: 3m+4n=27 m=9 n,方程的解为,当 m=5 , n=3 时,支付租金:1005+1203=860 元 850 元,超出限额; 当 m=1 , n=6 时,支付租金:1001+1206=820 元,符合要求答:有一种租车方案,即租用1 辆甲型挖掘机和3 辆乙型挖掘机点评:本题考查了一元一次不等式和二元一次方程组的应用解决问题的关键是读懂题意, 依题意列出等式(或不等式)进行求解11 (2014 年广西南宁,第24 题 10 分) “保护好环境,拒绝冒黑烟”某市公交公司将淘汰 某一条线路上“冒黑烟 ”较严重的公交车, 计划购买a 型和 b 型两种环保节能公交车共10 辆, 若购买 a 型公交车1 辆, b 型公交车2 辆,共需400 万元;若购买a 型公交车2 辆, b 型公交车 1 辆,共需350 万元(1) 求购买a 型和 b 型公交车每辆各需多少万元?(2) 预计在该线路上a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论