



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.4.课题学习最短路径教学设计 一、教材分析1、地位作用:随着课改的深入,数学更贴近生活,更着眼于解决生产、经营中的问题,于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题。这类问题的解答依据是“两点之间,线段最短”或“垂线段最短”,由于所给的条件的不同,解决方法和策略上又有所差别。初中数学中路径最短问题,体现了数学来源于生活,并用数学解决现实生活问题的数学应用性。2、目标和目标解析:(1)目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.(2)目标解析:达成目标的标志是:学生能讲实际问题中的“地点”“河”抽象为数学中的线段和最小问题,能利用轴对称将线段和最小问题转化为“连点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.3、教学重、难点教学重点:利用轴对称将最短路径问题转化为“连点之间,线段最短”问题教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.二、教学准备:多媒体课件、导学案三、教学过程教学内容与教师活动学生活动设计意图一、 前课回顾1、 两点之间线段最短。2、 垂线段最短。3、 数学模型:两点在直线异侧A。B。两点在直线同侧B。Al二、新课讲授 造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.乔早在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)BA思维分析:1、如图假定任选位置造桥,连接和,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?2、利用线段公理解决问题我们遇到了什么障碍呢?BA思维点拨:改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?(估计有以下方法)1、把A平移到岸边.2、把B平移到岸边.3、把桥平移到和A相连.4、把桥平移到和B相连.教师:上述方法都能做到使AM+MN+BN不变呢?请检验.1、2两种方法改变了.怎样调整呢?把A或B分别向下或上平移一个桥长那么怎样确定桥的位置呢?问题解决:如图,平移A到A1,使A1等于河宽,连接A1交河岸于作桥,此时路径最短. 理由;另任作桥,连接,. 由平移性质可知,. AM+MN+BN转化为,而转化为. 在中,由线段公理知A1N1+BN1A1B因此 AM+MN+BN 如图所示:BAA1NM方法提炼:将最短路径问题转化为“线段和最小问题”观察思考,动手画图,用轴对称知识进行解决各抒己见合作与交流交流体会体验轴对称知识的应用动手体验动手作图体验转化思想教学内容与教师活动学生活动设计意图三、巩固训练(一)基础训练:1、最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CACB最短,这时点C是直线l与AB的交点(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CACB最短,这时先作点B关于直线l的对称点B,则点C是直线l与AB的交点2.如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)如图,问题中所走总路径是AM+MN+NP+PQ+桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处.(二)变式训练:如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?学生独立思考解决问题独立思考,合作交流.巩固所学知识,增强学生应用知识的能力,渗透转化思想.提炼方法,为课本例题奠定基础.四、反思小结 布置作业小结反思 (1)本节课研究问题的基本过程是什么? (2)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?你还有哪些收获? 作业布置、课后延伸必做题:课本P93-15题;选做题:生活中,你发现那些需要用到本课知识解决的最短路径问题自由发言,相互借鉴.自我评价.总结回顾学习内容,帮助学生归纳反思所学知识及思想方法.关注学生的个体差异.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 池塘出租协议书
- 工厂工人托管协议书
- 电子品质协议书
- 祛斑赔偿协议书
- 工地意外赔偿协议书
- 港澳引渡协议书
- 离婚手撕协议书
- 爱心资助协议书
- 小孩委托抚养协议书
- 电子租用协议书
- 开展2025年《安全生产月》活动实施方案
- 乐山市市级事业单位选调工作人员考试真题2024
- 山东省济南市2025届高三三模生物试卷(含答案)
- 火力发电厂安全培训课件
- 宁波水产笔试题目及答案
- 中学金融知识讲座课件
- 第八章-实数(单元复习课件)七年级数学下册同步高效课堂(人教版2024)
- 2025凉山州继续教育公需科目满分答案-数字时代的心理健康
- 浙江百顺服装有限公司年产100万套服装及135万套床上用品生产线项目环境影响报告
- 玻璃维修安装合同协议
- 2024年中石油招聘考试真题
评论
0/150
提交评论