电动汽车动力电池磷酸铁锂正极材料制备与应用_第1页
电动汽车动力电池磷酸铁锂正极材料制备与应用_第2页
电动汽车动力电池磷酸铁锂正极材料制备与应用_第3页
电动汽车动力电池磷酸铁锂正极材料制备与应用_第4页
电动汽车动力电池磷酸铁锂正极材料制备与应用_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电动汽车动力电池磷酸铁锂正极材料制备与应用,Institute of Electrochemical & Energy TechnologyDepartment of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ,Zi-Feng Ma,Preparation and Application of the LiFePO4 Cathode Materials for Lithium Ion Battery,Abstract:动力电池是发展电动汽车的核心。发展电动汽车用低成本高密度蓄电体系,必须开展深入细致的基础科学问题研究。本报告将介绍中国开展的973计划电动汽车蓄电体系项目中在锂离子电池正极材料研究情况,重点介绍磷酸铁锂正极材料制备过程工程特性,高低温性能改进工艺及车用磷酸铁锂电池设计制作与示范情况。,马紫峰 教授(上海交通大学,中国)上海交通大学化学工程学教授,能源研究院副院长,电化学与能源技术研究所所长,中国科技部“973计划”计划“电动汽车用低成本高密度蓄电(氢)体系基础科学问题研究”项目首席科学家。主要从事锂离子电池、燃料电池电极材料制备与应用基础研究。,Introduction,Large-scale lithium-ion batteries have promising applications for electric vehicles (EV), hybride electric vehicles (HEV) and stationary energy storage for load-levelling,Li-ion batteries are the power sources for portable electronic devices such as mobile phones, camcorders and laptop computers,Three barriers to the commercialization of the NEW ENERGY VEHICLE(新能源汽车),National Basic Research Program of China(973 Program),1 Basic study for mass production of hydrogen, hydrogen storage and fuel cell application (2000-2005) Chief Scientist: Prof. Zongqiang Mao 2 Fundamental research of novel and green systems of secondary batteries (2002-2007, 2009-2013) Chief Scientist : Prof. Feng Wu,973 Program was launched in 1998. It mainly involves multi-disciplinary, comprehensive research on important scientific issues in such fields as agriculture, energy, information, resources and environmental, population and health, and materials, providing theoretical basis and scientific foundations for solving problems.,BARRIERS,Short rangePoor transient responseShort life-spanHigh cost,SOLUTIONS,Hydrogen storage,High power density,Volume capacityWeight capacity ,Power densityCyclingCost,EV, HEV,PHEV or FCEV ?,Molecular design and synthesis of hydrogen storage materials with high capacitiesStudy on inexpensive electrode materials and their energy storage mechanismFundamental studies of inexpensive electrochemical super-capacitorsStudy of solid-state electrolytes for energy storage system and low-cost production of related materialsProcess engineering of battery materials production with low costDevelopment of novel on-board hydrogen storage system with high density and of safety evaluation method Fundamental study of system management and environmental compatibility of on-board energy storage systems for FCEV,3 Basic study to energy storage system (hydrogen & electricity storage) with low cost and high power density for electric vehicle (2007-2011)Chief Scientist: Zi-Feng Ma,Executive Steering Group,973 Project Organization,Project Operations Group Chief ScientistProject Consultants,Hydrogen Storage TeamsNew materials for hydrogen storageCompressed hydrogen storageComposite hydrogen storage system,Electrochemical Energy Storage Teams Lithium ion batterySupercapacitorZEBRA batteryLT-SOFC,Joint Tech TeamsFuel Cell Electric Vehicle power systems analysisProcess engineering for energy material productionCodes & standards,Active materialsElectrolyteSeparator,Finding new cathode & anode active materials to improve the energy densityFinding new electrolyte systemCreating novel concepts,The overall electrochemical performance of lithium ion batteries is determined by the intrinsic properties of:,Active material for cathode in lithium-ion battery,Layered Structure: LiCoO2, LiNiO2, LiMnO2, LiNixCoyMnzO2Spinel Structure: LiMn2O4Olive Structure: LiFePO4Modified: LiNiO2 LiNi0.8Co0.2O2 LiMnO2 LiNi1/3Co1/3Mn1/3O2,The ultimate goal for cathode active material for next-generation lithium ion batteries for vehicles: Nominal discharge potential:4.0V Nominal capacity:150mAh/g (1C rate, RT) Rate Capability:95% (10C vs. 1C) Cycle life:80% after 5000 cycles of charge and discharge (SOC 0100%, 1C rate, RT) Thermal Stability: 300, 500J/g (SOC100%),LiFePO4 cathode materials,Advantage:High specific capacity 170mAh/gAbundant source and low costEnvironment benignThermal stability in the fully charged stateGood electrochemical performance,Disadvantage:Low conductivity;Low diffusive rate of lithium ion because of the existence of Fe4+,Solid state reaction,Microwave method,Co-precipitation,Sol-gel,Hydrothermal,ball mill method,Preparation process for LiFePO4materials,Preparation Process,Synthesis routes for LiFePO4,1. Solid state reactions at high temperatureLi2CO3+2Fe(CH3COO)2+2NH4H2PO42LiFePO4+4NH3+CO2+5H2O+2CH3COOH 2.Co-precipitation in aqueous medium Adding LiOH into a solution containing Fe2+ and phosphoric acid,the obtained precipitate was dried under vacuum and heat-treated at 550 for 12 h under inert atmosphere. Co-precipitation of Fe3(PO4)25H2O and Li3PO4 650-800 12h; 160 mAh/g (C/20)3. Hydrothermal synthesisFeSO4,H3PO4 and LiOH 120,5 hFe3(PO4)25H2O and Li3PO4, 220, 24bar 1h; 120 mAh/g(C/20)(5%C)4. Sol-gel methodAdding LiOH and Fe(NO3)3 to ascorbic acid then to H3PO4, 350 12h, 800 24h; 110 mAh/g(C/20)5.Mechanochemical activationFe3(PO4)25H2O and Li3PO4;160 mAh/g(C/20) (5%C),Novel routes for LiFePO4 Production-1,Mechanical chemical reaction Fe+2FePO4+Li3PO4.0.5H2O 3LiFePO4 + 0.5H2O,Xiao-Zhen Liao, Zi-Feng Ma, Liang Wang, Xiao-Ming Zhang, Yi Jiang, Yu-Shi He, Electrochem. Solid-State Lett. 2004,7(12):A522-A525(SCI引用26次)中国发明专利,一种锂离子电池正极材料磷酸铁锂的制备方法,ZL 200410018476.4,H3PO4,煅烧,Li2CO3,蔗糖,700-900,8-24hr,LiFePO4粉体,Controlled crystallization plus carbon thermal reduction process,5L Reactor,Novel routes for LiFePO4 Production-2,300 ton/year flow chart of the LiFePO4 preparation process at DMEGC Magnetics Co.,Ltd. China,a,b,A facile chemical polymerization method was developed to prepare LiFePO4/C-PPy composite cathode materials,PPy-LiFePO4/C ( C: 2.4wt%, PPy : 5wt%)LiFePO4/C (valance sample),Rate capabilities of LiFePO4/C and PPy-LiFePO4/C electrodes (active material : carbon black: PVDF=75:15:10),Cycle performance of PPy-LiFePO4/C composite at different temperatures,Discharge curves of LiFePO4/C and PPy-LiFePO4/C composite at 5C ,55C,PPy-LiFePO4/C,LiFePO4/C,36V12AH,44V10AH and 24V9AH battery packs for the application of electric scooter and electric vehicle was manufactured by DLG Battery (Shanghai) Co. Ltd.,36V12Ah,Application of the LiFePO4,Low-temperature performance of LiFePO4/C,The low temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte (1.0M LiPF6/EC+DMC+DEC+EMC (1:1:1:3, v/v) was studied. The discharge capacities of the LiFePO4/C cathode were about 134.5 mAh/g (20), 114 mAh/g (0), 90 mAh/g (-20) and 69 mAh/g (-40) using a 1C charge-discharge rate.,The improving of the reaction activity of the electrolyte-active material interface by surface modification and electrolyte optimization, increasing the lithium diffusion ability,Publications on LiFePO4 cathode materials,Yang Yang, Xiao-Zhen Liao, Zi-Feng Ma, Bao-Feng Wang, Li He, Yu-Shi He, Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55, Electrochemistry Communications, 2009 (in press) Xiao-Zhen Liao, Zi-Feng Ma, Qiang Gong, Yu-Shi He, Li Pei, Ling-Jie Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochemistry Communications, 2008,10(4):691-694 Xiao-Zhen Liao, Yu-Shi He, Zi-Feng Ma, Xiao-Ming Zhang and Liang Wang, Effects of Fluorine-substitut

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论