(试题 试卷 真题)A11 专题十一 应用问题_第1页
(试题 试卷 真题)A11 专题十一 应用问题_第2页
(试题 试卷 真题)A11 专题十一 应用问题_第3页
(试题 试卷 真题)A11 专题十一 应用问题_第4页
(试题 试卷 真题)A11 专题十一 应用问题_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题十五 应用问题【考点聚焦】应用问题是指有实际背景或问题有实际意义的数学问题,解答数学应用题,需在理解题意的基础上,把问题转化为相应的数学问题,再根据要求求解解应用问题的一般步骤为:(1)审题:理解题意,把握问题本质;(2)建模:分析题中的数量关系,建立相应数学模型,将应用问题转化为数学问题;(3)解模:用数学知识与方法解决转化了的数学问题;(4)回归:回到应用问题,检验结果的实际意义,给出答案复习中应加强概率、函数、不等式、线性规划以及函数与不等式、函数与数列、数列与不等式等综合问题的训练【自我检测】1(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文对应密文例如,明文对应密文当接收方收到密文时,则解密得到的明文为(C)(A)(B)(C)(D) 2(2006年天津卷)某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则 20 吨3(2004 福建)如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器。当这个正六棱柱容器的底面边长为 2/3 时,其容积最大.4(2006年上海)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示)1/35【重点难点热点】问题1 函数应用题例1 (2006湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为(1a3).设用单位质量的水初次清洗后的清洁度是(),用质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.()分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;()若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.解:()设方案甲与方案乙的用水量分别为x与z,由题设有=0.99,解得x=19. 由得方案乙初次用水量为3, 第二次用水量y满足方程: 解得y=4,故z=4+3.即两种方案的用水量分别为19与4+3. 因为当,故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+ 当为定值时, 当且仅当时等号成立.此时 将代入(*)式得 故时总用水量最少, 此时第一次与第二次用水量分别为 , 最少总用水量是. 当,故T()是增函数(也可以用二次函数的单调性判断).这说明,随着的值的最少总用水量, 最少总用水量最少总用水量.演变题 通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知: (1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中? (3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?解:(1)当,是增函数,且;,是减函数,且.所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟.(2),故讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中.当时,;当, (3)令,则学生注意力在180以上所持续的时间28.574=24.5724,所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题.问题2 数列应用题例2某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?解:设2001年末汽车保有量为万辆,以后各年末汽车保有量依次为万辆,万辆,每年新增汽车万辆,则 ,所以,当时,两式相减得:(1)显然,若,则,即,此时(2)若,则数列为以为首项,以为公比的等比数列,所以,.(i)若,则对于任意正整数,均有,所以,此时,(ii)当时,则对于任意正整数,均有,所以,由,得,要使对于任意正整数,均有恒成立,即 对于任意正整数恒成立,解这个关于x的一元一次不等式 , 得,上式恒成立的条件为:,由于关于的函数单调递减,所以,. 说明:本题是2002年全国高考题,上面的解法不同于参考答案,其关键是化归为含参数的不等式恒成立问题,其分离变量后又转化为函数的最值问题.问题3 解析几何应用题例3 某厂在计划期内要安排生产甲、乙两种产品,这些产品分别需要在A、B、C、D四种不同的设备上加工,按工艺规定,产品甲和产品乙在各设备上需要的加工台时数于下表给出已知各设备在计划期内有效台时数分别是12,8,16,12(一台设备工作一小时称为一台时),该厂每生产一件产品甲可得利润2元,每生产一件产品乙可得利润3元,问应如何安排生产计划,才能获得最大利润? 设备产品ABCD甲2140乙2204【解】 设计划期内生产甲x件,生产乙y件, 则 即 目标函数z=2x+3y,作直线2x+3y=t如图所示,可见当直线2x+3y=t过A点时,它在y轴上的截距最大,从而t最大显然A点坐标为(4,2)当x=4,y=2时,可获得最大利润14元【评析】 线性规划问题的求解过程,实质是数形结合的应用过程问题4三角、几何应用题例4(2005天津卷)某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l且点P在直线上,与水平地面的夹角为a ,tana=1/2试问此人距水平地面多高时,观看塔的视角BPC最大(不计此人的身高)分析:本小题考查根据实际问题建立函数关系并应用解析几何和代数的方法解决实际问题的能力。 解:如图所示,建立平面直角坐标系,则A(200,0),B(0,220),C(0,300), 直线l的方程为即 设点P的坐标为(x,y), 则 由经过两点的直线的斜率公式 由直线PC到直线PB的角的公式得 要使tanBPC达到最大,只须达到最小,由均值不等式 当且仅当时上式取得等号,故当x=320时tanBPC最大,这时,点P的纵坐标y为 由此实际问题知,所以tanBPC最大时,BPC最大,故当此人距水平地面60米高时,观看铁塔的视角BPC最大。专题小结求解数学应用题的突破口在于阅读与转译我们可以从四个方面入手:(1)划分题目的层次,应用题题目篇幅长,信息容量大,涉及知识点多,划分好层次是审题的关键;(2)领会关键词语领会定义的内涵和外延是解决问题的关键;(3)重视条件转译准确的条件转译是解应用题分析联想转化的关键步骤,也是分步解应用题踩点得分原则的具体体现注意将条件公式化、符号化,使条件和结论相互靠拢;与图形有关的应用题注意数形结合;(4)弄清题图联系分清题目条件与图形元素间的对应关系,也是审题过程中不可缺少的环节【临阵磨枪】一 选择题1某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( B ) A. 511个 B. 512个 C. 1023个 D. 1024个2两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是 ( C ) A. B. C. D. 3(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文对应密文例如,明文对应密文当接收方收到密文时,则解密得到的明文为(C)(A)(B)(C)(D)4某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,k,规定:同意按“1”,不同意(含弃权)按“0”,令 其中i=1,2,k,且j=1,2,k,则同时同意第1,2号同学当选的人数为( C )ABC0.30.14.34.44.54.64.74.84.95.05.15.2视力D5(2005江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为( A )A0,27,78B0,27,83信号源C2.7,78D2.7,836(2006年江苏卷)右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( D )(A)(B)(C)(D)7(2006年四川卷)某厂生产甲产品每千克需用原料和原料分别为,生产乙产品每千克需用原料和原料分别为千克,甲、乙产品每千克可获利润分别为元,月初一次性够进本月用原料各千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为千克,千克,月利润总额为元,那么,用于求使总利润最大的数学模型中,约束条件为(C) (A) (B) (C) (D)8(2006年北京卷)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口的机动车辆数如图所示(20,30;35,30;55,50),图中分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则( C )(A) (B)(C) (D)二 填充题9将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 . 10(2006天津)某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则 20 吨。11(2004浙江)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有_5_种(用数字作答).12(2003江苏)某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 .(以数字作答)120三 计算题13某集团公司为了获得更大的收益,每年要投入一定的资金用于广告促销经调查,每投入广告费t(百万元),可增加销售额约为t2+5t(百万元)(0t5)(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造经预测,每投入技术改造费x(百万元),可增加的销售额约为x3+x2+3x(百万元)请设计一个资金分配方案,使该公司由此获得的收益最大?(注:收益=销售额投入)14(2005上海)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?15关于某港口今后20年的发展规划,有如下两种方案:方案甲:按现状进行运营。据测算,每年可收入760万元,但由于港口淤积日益严重,从明年开始需投资进行清淤,第一年投资50万元,以后逐年递增20万元。方案乙:从明年起开始投资6000万元进行港口改造,以彻底根治港口淤积并提高吞吐能力。港口改造需用时4年,在此期间边改造边运营据测算,开始改造后港口第一年的收入为320万元,在以后的4年中,每年收入都比上一年增长50%,而后各年的收入都稳定在第5年的水平上。(1) 从明年开始至少经过多少年,方案乙能收回投资(累计总收益为正数)?(2) 从明年开始至少经过多少年,方案乙的累计总收益超过方案甲?(收益收入投资)OO116(2006江苏)请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心的距离为多少时,帐篷的体积最大?的能力17(2006年江西)如图,已知ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过ABC的中心G,设MGAa()(1) 试将AGM、AGN的面积(分别记为S1与S2)表示为a的函数(2) 求y的最大值与最小值【答案及点拨】1 B 点拨:细菌数构成以1为首项,2为公比的等比数列,由等比数列的通项公式可知:210-1=512.2 C 点拨:比较三面重叠情况.3 C 为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16。当接收方收到密文14,9,23,28时,则,解得,解密得到的明文为C4 C 点拨:关键是理解aij的含义5 A点拨:本题涉及数理统计的若干知识.由图象可知,前4组的公比为3,最大频率,设后六组公差为,则,解得:,后四组公差为0.05, 所以,视力在4.6到5.0之间的学生数为(0.270.220.170.12)10078(人).选A.6 D点拨:对于左端的接线点的每一种情况,相应地右端的接线方式决定概率的大小。不妨将左端接为12;34;56。这时右端有种接法,其中满足条件的接法时,将接线点1与3,4,5,6其中一个接好,比如接13,有种方法,这时接线点2只能与5或6接线,有2种方法,所以合理的接法共有42=8种,所以概率,选D.7 C 点拨: 某厂生产甲产品每千克需用原料和原料分别为,生产乙产品每千克需用原料和原料分别为千克,甲、乙产品每千克可获利润分别为元,月初一次性够进本月用原料各千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为千克,千克,月利润总额为元,那么,用于求使总利润最大的数学模型中,约束条件为,选C.8 C点拨:不妨设在A路口绕环岛环行的车辆为m辆,则在段的车辆为x1=m+50,在段的车辆为x2=(m+5020+30)=m+60,在段的车辆为x3=(m+6035+30)=m+55, ,选C.9 点拨:设量建立函数关系,根据函数求最值的方法而得.10 20点拨:某公司一年购买某种货物400吨,每次都购买吨,则需要购买次,运费为4万元/次,一年的总存储费用为万元,一年的总运费与总存储费用之和为万元,160,当即20吨时,一年的总运费与总存储费用之和最小。11 5 点拨:12 120 点拨:本题属于较新的问题即圆环排列问题,基本解题思路是把圆环排列问题转化为直线排列问题,在解题时注意分类讨论思想的应用.13【解】(1)设投入t(百万元)的广告费后增加的利益为f(t)(百万元),则有f(t)=(t2+5t)t=t2+4t=(t2)2+4(0t3),当t=2百万元时,f(t)取得最大值4百万元,即投入2百万元广告费时,该公司由此获得的收益最大(2)设用于技术改造的资金为x(百万元),则用于广告促销的资金为(3x)(百万元)(0x3),又设由此而增加的收益是g(x)(百万元),则有g(x)=(x3+x2+3x)+-(3x)2+5(3-x)3=x3+4x+3(0x3),g(x)=x2+4令g(x)=0,解得x=2(舍去)或x=2又当0x2时,g(x)0;当2x3时,g(x)0,故g(x)在上是增函数,在上是减函数当x=2时,g(x)取得最大值答:用于技术改造资金为2百万元,广告1百万元时,公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论