重邮大学物理英文版 (5)ppt课件_第1页
重邮大学物理英文版 (5)ppt课件_第2页
重邮大学物理英文版 (5)ppt课件_第3页
重邮大学物理英文版 (5)ppt课件_第4页
重邮大学物理英文版 (5)ppt课件_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 3ELECTRICFLUX GAUSS SLAW 17 04 2020 1 1 ElectricFieldLines Aconvenientspecializedpictorialrepresentationforvisualizingelectricfieldpatternsiscreatedbydrawinglineswhicharecalledelectricfieldlines Theelectricfieldlinesarerelatedtotheelectricfieldinanyregionofspaceinthefollowingmanner 17 04 2020 2 1 Thetangentdirectionateverypointonanelectricfieldlineisjustthedirectionofthefieldintensityatthatpointorthedirectionoftheforceonthepositivepointchargeatthatpoint 2 Theelectricfieldlinesaredenserintheplacewherethefieldintensityisstronger andtheelectricfieldlinesaresparserintheplacewherethefieldintensityisweaker 3 Theelectricfieldlinesstartonpositivechargesandterminateonnegativecharges andneverintersectedeachother Itisneverinterruptedinregionwithoutcharge thisiscalledthecontinuityofelectricfieldline 4 Keepinmind electricfieldlinesdonotactuallyexist 17 04 2020 3 Forapositivepointcharge thelinesaredirectedradiallyoutward Foranegativepointcharge thelinesaredirectedradiallyinward Theelectricfieldlinesfortwochargesofequalmagnitudeandoppositesign anelectricdipole NOTE thenumberoflinesleavingthepositivechargeequalsthenumberterminatingatthenegativecharge Theelectricfieldlinesfortwopositivepointcharges Theelectricfieldlinesforapointcharge 2qandasecondpointcharge q RingAmount 17 04 2020 8 FluxAmount 2 ElectricFlux e 1 Uniformelectricfield 2 Uniformelectricfield S 3 Nonuniformelectricfield arbitrarysurface UNIT Vm 17 04 2020 10 Where 17 04 2020 11 Aclosedsurfaceisdefinedasonethatcompletelydividesspaceintoaninsideregionandoutsideregion sothatmovementcannottakeplacefromoneregiontotheotherwithoutpenetratingthesurface Foraclosedsurface usuallydefinethenormallineateverypointonthesurfacepointsoutoftheclosedsurface Aclosedsurface Aopensurface 17 04 2020 12 0 0 0 n n Accordingtotheconvention outwardtheclosedsurface inwardtheclosedsurface 17 04 2020 14 Thereisacubesurfaceofedgelengthaintheuniformelectricfield isaconstant asshowninfigure Findtheelectricfluxofeveryplaneandthecubesurface Example 17 04 2020 15 Gaussworkedinawidevarietyoffieldsinbothmathematicsandphysicsincludingnumbertheory analysis differentialgeometry geodesy magnetism astronomyandoptics Hisworkhashadanimmenseinfluenceinmanyareas Sometimesknownas theprinceofmathematicians and greatestmathematiciansinceantiquity JohannCarlFriedrichGauss1777 1855 3 GAUSS SLAW 17 04 2020 16 Thenetelectricfluxofanarbitraryclosedsurfaceinthevacuumisequaltothenetchargeinsidethesurfacedividedby 1 GAUSS SLAW 17 04 2020 17 S Theclosedsurface i e gaussiansurface Itisanimaginarysurfaceandneednotcoincidewithanyrealphysicalsurface isthetotalelectricfieldatanypointonthesurfaceduetoallcharges Surfaceelement Itsorientationisperpendiculartothesurfaceandpointsoutwardfromtheinsideregion Thealgebrasumofchargesintheclosedsurface Theclosesurfaceintegralisoverallgaussiansurface 17 04 2020 18 Itgiveasimplewaytocalculatethedistributionofelectricfieldforagivenchargedistributionwithsufficientsymmetry 17 04 2020 19 r 2 Proving Asphericalgaussiansurfaceofradiusrsurroundingapointchargeqwhichisatthecentreofthesphere Theelectricfieldisnormaltothesurfaceandconstantinmagnitudeeverywhereonthesurface 17 04 2020 20 Asphericalgaussiansurfaceofradiusrsurroundingapointchargeqwhichisnotatthecentreofthesphere r q O 17 04 2020 21 Anarbitrarygaussiansurfacesurroundingapointchargeq Thenetelectricfluxthrougheachsurfaceisthesame 17 04 2020 22 S q1 q2 q3 Therearemanychargesinsidetheguassiansurface 17 04 2020 23 Apointchargelocatedoutsideaclosedsurface Thenumberoflinesenteringthesurfaceequalsthenumberleavingthesurface Thenetelectricfluxthroughaclosedsurfacethatsurroundsnonetchargeiszero Zerofluxisnotzerofield 17 04 2020 24 Conclusion Thenetfluxthroughanyclosedsurfacesurroundingthepointchargeqisgivenby Asystemofcharges Continuousdistributionofcharges 17 04 2020 25 3 PhysicalMeaning Thepositivechargeisthesourceoftheelectrostaticfield Gauss slawisvalidfortheelectricfieldofanysystemofchargesorcontinuousdistributionofcharge Guass slawcanbeusedtoevaluatetheelectricfieldforchargedistributionsthathavespherical cylindrical orplanesymmetry Thetechniqueisusefulonlyinsituationswherethedegreeofsymmetryishigh 17 04 2020 26 QuickQuiz Whyaretheelectrostaticfieldlinesneverinterruptedinregionwithoutcharge 17 04 2020 27 Findthefluxthroughthesquare QuickQuiz 17 04 2020 28 Considerwhetherthefollowingstatementsaretruth ElectricfluxoftheGausssurfaceisrelatedwithchargesinGausssurfaceandisnotrelatedwithchargesoutofGausssurface ThefieldintensityatapointontheGausssurfaceisrelatedwithchargesintheGausssurfaceandisnotrelatedwithchargesoutoftheGausssurface IftheelectricfluxofaGausssurfaceequalszero theremustbenotchargeintheGausssurface 17 04 2020 29 IftheelectricfluxofaGausssurfaceequalszero thenfieldintensityateverypointontheGausssurfaceiszero Gausstheoremistenableonlytotheelectrostaticfieldwhosedistributionissymmetricalinspace 17 04 2020 30 4 ApplicationofGauss sLawtoSymmetricChargeDistribution Thegaussiansurfaceshouldalwaysbechosentotakeadvantageofthesymmetryofthechargedistribution sothatwecanremoveEfromtheintegralandsolveit 17 04 2020 31 Thegaussiansurfacehadbettersatisfiesoneormoreofthefollowingconditions Thevalueoftheelectricfieldisconstant andareparallel andareperpendicular isequaltozeroeverywhereonthesurface Note ThesurfaceintegralinGuass slawistakenovertheentiregaussiansurface 17 04 2020 32 Planesymmetry Sphericalsymmetry Thethreesymmetries Cylindricalsymmetry 17 04 2020 33 Problem solvingstrategy Analysisthesymmetryofthefieldintensitydistribution Selectappropriategaussiansurface Selectappropriatecoordinates applyGauss slaw 17 04 2020 34 Example1 ElectricquantityQdistributesuniformlyonasphericalsurfaceofcenterOandradiusR Findthefieldintensity 1 ASphericallySymmetricChargeDistribution Analysisthesymmetryofthefieldintensitydistribution 17 04 2020 35 Sphericalsymmetry Themagnitudeoftheelectricfieldisconstanteverywhereontheconcentricsphericalsurface andthefieldisnormaltothesurfaceateachpoint 36 Selectappropriategaussiansurface 17 04 2020 37 Note Forauniformlychargedsphericalsurface thefieldintheregionexternaltothesphericalsurfaceisequivalenttothatofapointchargeatthecenterofthespheresurface 17 04 2020 38 QuickQuiz TherearetwoconcentricchargedsphericalshellsofradiusR1andR2 Chargequantitiesdistributeuniformly 17 04 2020 39 Example2 Aninsulatingsolidsphereofradiusrhasauniformvolumechargedensity andcarriesatotalpositivechargeQ Calculatetheelectricfieldintensity Solution Becausethechargedistributionissphericallysymmetric weselectasphericalgaussiansurfaceofradiusr concentricwiththesphere 17 04 2020 40 17 04 2020 41 Theelectricfieldinsidethesphere varieslinearlywithr Theelectricfieldoutsidethesphere isthesameasthatofapointchargeQlocatedatr 0 Theexpressionsoffieldintensitymatchwhenr a 17 04 2020 42 2 ACylindricallySymmetricChargeDistribution aninfiniteuniformchargedstraightline aninfiniteuniformchargedcylinder Example1 Asectionofaninfinitelylongcylindricalplasticrodwithauniform Letusfindanexpressionforthemagnitudeoftheatadistancerfromtheaxisoftherod Infinitelength 17 04 2020 43 Analysisthesymmetryofthefieldintensitydistribution 17 04 2020 44 CylindricalSymmetry Themagnitudeoftheelectricfieldisconstanteverywhereonthecoaxialcylindricalsurface andthefieldisnormaltothesurfaceateachpoint 17 04 2020 45 2 Selectappropriategaussiansurface acylindricalgaussiansurfaceofradiusrandlengthlthatiscoaxialwiththelinecharge 17 04 2020 46 17 04 2020 47 Thefieldintensityofaninfiniteuniformchargedstraightline 17 04 2020 48 Example2 17 04 2020 49 QuickQuiz ThechargedensityofaninfiniteuniformsolidchargedcylinderofradiusRis findtheelectricfieldintensity 17 04 2020 50 3 PlanarSymmetry InfiniteChargedPlaneorSheet 17 04

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论