【高考风向标】高考数学一轮复习 第三章 第8讲 函数模型及其应用课件 理.ppt_第1页
【高考风向标】高考数学一轮复习 第三章 第8讲 函数模型及其应用课件 理.ppt_第2页
【高考风向标】高考数学一轮复习 第三章 第8讲 函数模型及其应用课件 理.ppt_第3页
【高考风向标】高考数学一轮复习 第三章 第8讲 函数模型及其应用课件 理.ppt_第4页
【高考风向标】高考数学一轮复习 第三章 第8讲 函数模型及其应用课件 理.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第8讲 函数模型及其应用 1 学习过的基本初等函数主要有 指数函数 一次函数 二次函数 正 反 比例函数 三角函数 等 对数函数 幂函数 要熟练掌握这些函数的图象与性质 以便利用它们来解决一些非基本函数的问题 2 用基本初等函数解决非基本函数问题的途径 1 化整为零 即将非基本函数 拆 成基本初等函数 以便用已知知识解决问题 2 图象变换 某些非基本函数的图象可看成是由基本初等函数图象通过图象变换得到的 搞清了变换关系 便可借助基本初 等函数解决非基本函数问题 二次函数模型 3 在解决某些应用问题时 通常要用到的一些函数模型 分式函数模型 分段函数模型等 4 三种函数增长的条件 幂函数模型 当a 1时 指数函数y ax是增函数 并且当a越大时 其函数的增长就越快 一次函数模型 指数函数模型 对数函数模型 当a 1时 对数函数y logax是增函数 并且当a越小时 其函数的增长就越快 当x 0 n 0时 幂函数y xn是增函数 并且当n越大时 其函数的增长就越快 5 三种函数增长速度的比较 直线上升 指数爆炸 对数增长等不同函数模型的增长的含义 当a 1 n 0时 那么当x足够大时 一定有指数函数值增长快于幂函数值增长 幂函数值增长快于对数函数值增长 也就是说 指数函数值增长最快 人们常称这种现象为 指数爆炸 1 某一种商品降价10 后 欲恢复原价 则应提价 d 2 有一块长为20厘米 宽为12厘米的矩形铁皮 将其四个角各截去一个边长为x的小正方形 然后折成一个无盖的盒子 则盒子的容积v与x的函数关系式是 a v x 20 2x 12 2x x 0 12 b v x 20 x 12 x x 0 12 c v x 20 2x 12 2x x 0 6 d v x 20 2x 12 2x x 0 10 3 某计算机集团公司生产某种型号计算机的固定成本为200万元 生产每台计算机的可变成本为3000元 每台计算机的售价为5000元 则 1 总成本c 万元 关于总产量x 台 的函数关系式为 c 200 0 3x x n 2 单位成本p 万元 关于总产量x 台 的函数关系式为 3 销售收入r 万元 关于总产量x 台 的函数关系式为 r 0 5x x n 4 利润l 万元 关于总产量x 台 的函数关系式为 l 0 2x 200 x n 4 一等腰三角形的周长是20 底边y是关于腰长x的函数 它的解析式为 5 已知函数y1 2x和y2 x2 当x 2 4 时 函数 的值增长快 当x 4 时 函数 的值增长快 y 20 2x 5 x 10 y2 x2 y1 2x 考点1 正比例 反比例和一次函数类的实际问题 例1 某商店出售茶壶和茶杯 茶壶每个定价20元 茶杯每个定价5元 该店推出两种优惠办法 1 买一个茶壶赠送一个茶杯 2 按总价的92 付款 某顾客需要购茶壶4个 茶杯若干 不少于4个 若需茶杯x个 付款数为y 元 试分别建立两种优惠办法中y与x的函数关系 并讨论顾客选择哪种优惠方法更划算 解析 由优惠办法 1 可得函数关系式 y1 20 4 5 x 4 5x 60 x 4 由优惠办法 2 可得函数关系式 y2 5x 4 20 92 4 6x 73 6 x 4 比较 y1 y2 0 4x 13 6 x 4 当0 4x 13 6 0 即x 34时 y1 y2 即当购买茶杯个数大 于34时 优惠办法 2 合算 当0 4x 13 6 0 即x 34时 两种优惠办法一样合算 当0 4x 13 6 0 即4 x 34时 y1 y2 优惠办法 1 合算 本题考查的是建立一次函数模型 并应用一次函数模型解决实际问题的能力 第一种优惠办法 实际付款是4个茶壶的钱和 x 4 个茶杯的钱 第二种优惠办法只需将货款总数乘以92 而后再作差比较二者的大小即可 互动探究 1 一批物资要用11辆汽车从甲地运到360千米外的乙地 批物资至少需要 a 10小时 b 11小时c 12小时 d 13小时 c 考点2分段函数类的实际问题例2 某厂生产某种产品的年固定成本为250万元 每生产x 1450 万元 每件商品售价为0 05万元 通过市场分析 该厂生产的商品能全部售完 1 写出年利润l 万元 关于年产量x 千件 的函数解析式 2 年产量为多少千件时 该厂在这一商品的生产中所获利润最大 所以 当产量为100千件时 该厂在这一商品中所获利润最大 最大利润为1000万元 现实生活中有很多问题是用分段函数表示的 如出租车计费 个人所得税计算 邮政资费等等 故分段函数是刻画现实生活的重要模型 本题的分段函数考查二次函数前者配方 后者利用基本不等式 互动探究 2 通过研究学生的学习行为 心理学家发现 学生的接受能力依赖于老师引入概念和描述问题所用的时间 讲座开始时 学生兴趣激增 中间有一段不太长的时间 学生的兴趣保持较理想的状态 随后学生的注意力开始分散 分析结果和实验表明 用f x 表示学生掌握和接受概念的能力 x表示提出概念和讲授概念的时间 单位 分 可有以下的关系式 1 开讲后多少分钟 学生的接受能力最强 能维持多少时间 2 一个数学难题 需要55 或以上 的接受能力 上课开始30分钟内 求能达到该接受能力要求的时间共有多少分钟 3 如果每隔5分钟测量一次学生的接受能力 再计算平均值 m f 5 f 10 f 30 6 它能高于45吗 故当0 x 10时 f x 递增 最大值为 f 10 0 1 3 2 59 9 59 显然 当16 x 30时 f x 递减 f x 3 16 107 59 因此 开讲后10分钟 学生达到最强的接受能力 并维持6分钟 2 依题意 当0 x 10时 令f x 55 则 x 13 2 49 6 x 10 当10 x 16时 f x 59符合要求 解 1 0 x 10时 有f x 0 1x2 2 6x 43 0 1 x 13 2 59 9 考点3 二次函数类的实际应用题 例3 某市场调查发现 某种产品在投放市场的30天中 其销售价格p元和时间t t n 的关系如图3 8 1所示 1 写出销售价格p 元 和时间t 天 的函数解析式 2 若日销售量q 件 与时间t 天 的函数关系是q t 40 0 t 30 t n 求该商品的日销售金额y 元 与时间t 天 的函数解析式 3 问该产品投放市场第几天时 日销售额最高 最高值为多少元 图3 8 1 当25 t 30 t n时 70 30 函数在 25 30 上是减函数 因此t 25时 y有最大值1125元 因为1125 870 所以在第25天日销售额最大 最大值为1125元 二次函数是我们比较熟悉的函数模型 建立二次函数模型可以求出函数的值域或最值 解决实际中的优化问题时 一定要分析自变量的取值范围 利用配方法求最值时 一定要注意对称轴与给定区间的关系 若对称轴在给定的区间内 可在对称轴处取一最值 在离对称轴较远的端点处取另一最值 若对称轴不在给定的区间内 最值在区间的端点处取得 另外在实际的问题中 还要考虑自变量为整数的问题 互动探究 3 某汽车运输公司购买了一批豪华大客车投入客运 据市场分析 每辆客车营运的总利润y万元与营运年数x x n 的关系为y x2 20 x 36 1 每辆客车从第几年起开始盈利 2 每辆客车营运多少年 可使其营运的总利润最大 3 每辆客车营运多少年 可使其营运的平均利润最大 考点4实际应用中对模拟函数的优化设计 例4 福布斯2009年中国富豪榜发布后 有人认为中国富豪受益于活跃的股票市场 得益于强劲的资本市场 股票有风险应考虑中长期投资 若某股票上市时间能持续15年 预测上市初期和后期会因供求及市场前景分析使价格呈连续上涨态势 而中期有将出现供大于求使价格连续下跌 现有三种价格随发行年数的模拟函数 a f x p qx b f x logqx p c f x x 1 x q 2 p 以上三式中p q均为常数 且q 2 1 为准确研究其价格走势 应选哪种价格模拟函数 为什 么 2 若f 1 4 f 3 6 求出所选函数f x 的解析式 一般散户为保证个人的收益 通常考虑打算在价格下跌期间出售股票 请问他们会在哪几个年份出售 所以函数f x 有两个零点 可以出现两个递增区间和一个递减区间 所以应选f x x 1 x q 2 p为其价格模拟函数 2 由f 1 4 f 3 6 得p 4 q 4 其中q 2舍去 所以f x x3 9x2 24x 12 1 x 15 x n 由 知 f x 3x2 18x 24 0 2 x 4 所以f x 在区间 2 4 上单调递减 故他们会在发行的第2 3年出售 解数学应用题应该注意以下几点 1 在引入自变量建立目标函数解决函数应用题时 要注意自变量的取值范围 要检验所得结果 必要时运用估算和近似计算 使结果符合实际问题的要求 2 在实际问题向数学问题的转化过程中 要充分使用数学语言 如引入字母 列表 画图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论