




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
mssa.rar EEOF.M function E,V,A,C=eeof(X, M, convert) % Syntax: E,V,A,C=eeof(X, M); E,V,A,C=eeof(X, M, 1); % This function performs an extended empirical orthogonal % function (EEOF) analysis of matrix X, for embedding dimension M. % Each of the L columns of X is a time series of length N. % % Returns: E - eigenfunction matrix. (LM by LM) % V - vector containing variances (unnormalized eigenvalues). % A - matrix of principal components. % C - lag-covariance matrix. % % V is ordered from large to small: E and A are sorted accordingly. % % Note that X is assumed to be centered. To center the data, use % the commands: % r,c=size(X); X=X-ones(r,1)*mean(X); before running EEOF. % If you also want to standardize the data, use: % X=X./(ones(r,1)*std(X);. % % If a third argument is supplied, the eigenfunctions/values will % be reordered into the same format as MSSA output - i. e. L blocks % of size M rather than M blocks of size L. % % This function provides the same output, within numerically determined % limits, as MSSA methods using Broomhead-King type covariance estimation: % it is intended as a check on those functions. % % Note that this function is *extremely* computationally intensive % for large matrices and lags. For example, if X is 1000 by 1000, % and M = 5, EEOF will take about 10 hours on a Cray YMP! Inputting % a subset of the PCs of X rather than the full data matrix can % substantially reduce the computational load. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % N,L=size(X); if M*L=N-M+1, disp(Warning: Covariance matrix may be ill-conditioned.), end % Create the extended matrix: T=zeros(N-M+1,M*L); for i=1:M T(:,L*(i-1)+1:L*i)=X(i:N-M+i,:); end % Compute the eigenvectors/values of the covariance matrix: C=(T*T)/(N-M+1); clear X E,V=eig(C); V=diag(V); A=T*E; % compute principal components if nargin=3 % Prepare MSSA-style output: % sort E,V,C, and A from M blocks of L to L blocks of M. ind=1:L:(M-1)*L+1; for i=1:L, index=index ind+i-1; end E=E(index,index); V=V(index); % sort the covariance matrix and PCs: C=C(index,index); A=A(:,index); end % Sort eigenvalues/vectors/PCs in descending order: V,ind=sort(-V); V=-V; E=E(:,ind); A=A(:,ind); 窗体底端 mssa.rar EOF.Mfunction F,L,B=eof(X,n,s); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix X. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9,norm); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % s - Normalization option. If s=norm, then each % column of X will be normalized (assigned % unit variance). If s is not specified, the % data are not normalized. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % r,c=size(X); if cr, disp(Warning: Covariance matrix may be ill-conditioned.), end if nargin=1 n=c; s=none; elseif nargin=2 if isstr(n) s=n; n=c; else s=none; end end X=X-ones(r,1)*mean(X); % center the data if s=norm X=X./(ones(r,1)*std(X); % normalize elseif s=none error(Improper normalization option. Please check inputs.) end S=X*X; % compute the covariance matrix F,L=eig(S); clear S % sort eigenvectors, eigenvalues L,i=sort(diag(-L); L=-L; F=F(:,i); % figure out how many eigenvectors to keep: if n=var); n=i(1); end if cn, F=F(:,1:n); end % keep only first n eigenvectors B=X*F; % calculate principal components (first n) mssa.rar EOFCENT.Mfunction F,L,B=eofcent(X,n); % EOF calculates the empirical orthogonal functions % and amplitudes (principal components) of the data matrix X. % Syntax: F,L,B=eof(X); F,L,B=eof(X,.9); % % Input: X - data matrix. For a standard (S-mode) EOF analysis, % the columns of X are time series, while the rows % are spatial maps. The eigenfunctions in this case % will be spatial patterns, and the principal % components are time series. % n - number of eigenfunctions to return (optional). % If n is less than 1, it is interpreted as % a fractional variance (e. g. n=.9), and enough % eigenvectors are returned to account for n*100% % of the variance. The default is to return all EOFs. % % Output: F - eigenfunction matrix (columns are eigenvectors). % L - vector of eigenvalues.(all eigenvalues are returned) % B - principal components matrix. % % EOFCENT does the same thing as EOF, but does not allow the data matrix to % be modified within the function, thus avoiding the memory penalty of passing % the large data matrix into the function. If you want to center or % standardize the data, you must do it in the main workspace before calling % EOFCENT The commands r,c=size(X); X=X-ones(r,1)*mean(X); will center the % data. If you then want to standardize the data, use X=X./(ones(r,1)*std(X);. % % Written by Eric Breitenberger. Version date 1/11/96 % Please send comments and suggestions to % r,c=size(X); if cr, disp(Warning: Covariance matrix may be ill-conditioned.), end if nargin=1 n=c; end S=X*X; % comp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业废弃物资源化利用政策咨询创新创业项目商业计划书
- 教师招聘之《幼儿教师招聘》复习试题带答案详解
- 押题宝典教师招聘之《小学教师招聘》考试题库附答案详解【达标题】
- 微型企业面试高频题答题技巧及答案详解1套
- 教师招聘之《小学教师招聘》练习题附完整答案详解(必刷)
- 2025年四川天府新区党工委管委会工作机构所属事业单位选调10人笔试备考题库及参考答案详解一套
- 2025年教师招聘之《幼儿教师招聘》考试题库带答案详解(模拟题)
- 2025年北京银行长沙分行社会招聘笔试备考题库及答案解析
- 合肥市非国有博物馆的现状、困境与发展路径研究
- 2025年泌尿外科手术技术操作模拟考核答案及解析
- 七年级上册英语单词形象记忆法
- 小学生科普知识蜜蜂介绍PPT
- GB/T 5590-2008矿用防爆低压电磁起动器
- 船舶电气知识培训课件
- 院前急救理论知识考核试题题库及答案
- 归类总规则培训资料课件
- 监理工作管理制度汇编
- 豁免知情同意申请表【模板】
- DB33- 1015-2021《居住建筑节能设计标准》
- 最新2022年全市住院医师规范化培训实践技能考核人员及时间安排
- 基于MAXIMO的发电行业EAM解决方案
评论
0/150
提交评论