


免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本章优化总结 专题探究精讲 本章优化总结 知识体系网络 知识体系网络 专题探究精讲 题型特点 对圆锥曲线定义的考查多以选择题和填空题形式出现 一般难度相对较小 若想不到定义的应用 计算量将会加大 解题时应注意应用 知识方法 1 平面内满足 PF1 PF2 2a 2a F1F2 的点P的轨迹叫做椭圆 定义可实现椭圆上的点到两焦点的距离的相互转化 2 平面内满足 PF1 PF2 2a 2a F1F2 的点P的轨迹叫做双曲线 PF1 PF2 2a 2a F1F2 表示焦点F2对应的一支 定义可实现双曲线上的点到两焦点的距离的相互转化 3 平面内与一个定点F和一条定直线l 不经过点F 距离相等的点的轨迹叫做抛物线 定义可实现抛物线上的点到焦点与到准线距离的相互转化 答案 B 题型特点 有关圆锥曲线的焦点 离心率等问题是考试中常见的问题 只要掌握基本公式和概念 并且充分理解题意 大都可以顺利求解 知识方法 圆锥曲线的简单几何性质 1 圆锥曲线的范围往往作为解题的隐含条件 2 椭圆 双曲线有两条对称轴和一个对称中心 抛物线只有一条对称轴 3 椭圆有四个顶点 对曲线有两个顶点 抛物线只有一个顶点 4 双曲线焦点位置不同 渐近线方程不同 5 圆锥曲线中基本量a b c e p的几何意义及相互转化 答案 D 题型特点 近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置 且选择 填空也有涉及 有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点 弦长等 知识方法 与圆锥曲线有关的最值问题大多是综合性 解法灵活 技巧性强 涉及代数 几何等知识的题目 常用的解决方法有两种 一是几何法 若题目的条件和结论能明显体现几何特征及意义 则考虑利用图形性质来解决 二是代数法 若题目的条件和结论能体现一种明确的函数 则可首先列出函数关系式 再求这个函数的最值 题型特点 圆锥曲线中的最值 取值范围问题既是高考的热点问题 也是难点问题 解决这类问题的基本思想是建立目标函数和不等关系 根据目标函数和不等式求最值 取值范围 因此这类问题的难点就是如何建立目标函数和不等关系 知识方法 圆锥曲线中的定点 定值问题往往与圆锥曲线中的 常数 有关 如椭圆的长 短轴 双曲线的虚 实轴 抛物线的焦点等 可通过直接计算而得到 另外还可用 特例法 和 相关曲线系法 圆锥曲线中的最值问题 通常有两类 一类是有关长度 面积等的最值问题 一类是圆锥曲线中有关几何元素的最值问题 这两类问题的解决往往要通过回归定义 结合几何知识 建立目标函数 利用函数的性质或不等式知识 三角函数有界性 以及数形结合 设参 转化代换等途径来解决 特别注意函数思想 观察分析图形特征 利用数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版西北旺外墙改造项目质量保障及施工合同
- 2025年度事业单位员工退休待遇补充合同
- 2025保险代理咨询服务合同模板(含保险科技)
- 河北省昌黎县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度光伏产品代理进口合作协议
- 海南省万宁市2025年上半年公开招聘村务工作者试题含答案分析
- 2025电脑包年维护合同含硬件更换与故障响应服务
- 海南省澄迈县2025年上半年公开招聘城市协管员试题含答案分析
- 2025版石材幕墙安装与工程款支付进度合同
- 2025年度拆迁安置房买卖及物业管理合同
- 建设单位向施工企业施工安全交底
- 学习《中小学教育惩戒规则(试行)》课件
- 初中数学教材解读人教八年级上册(2023年修订)第十三章轴对称等边三角形 导学案
- DB11-T1515-2018养老服务驿站设施设备配置规范
- 政府会计制度应用课件
- 五年级上册美术教学计划
- 有色金属贵金属冶金
- 2020外研社高中英语选择性必修四课文翻译
- 西方文论课程教学大纲
- 外科医学—颅内和椎管内血管性疾病
- 井控设备(2015)
评论
0/150
提交评论