2019年六年级数学下册 11.1《认识三角形》学案(第2课时) 鲁教版五四制.doc_第1页
2019年六年级数学下册 11.1《认识三角形》学案(第2课时) 鲁教版五四制.doc_第2页
2019年六年级数学下册 11.1《认识三角形》学案(第2课时) 鲁教版五四制.doc_第3页
2019年六年级数学下册 11.1《认识三角形》学案(第2课时) 鲁教版五四制.doc_第4页
2019年六年级数学下册 11.1《认识三角形》学案(第2课时) 鲁教版五四制.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年六年级数学下册 11.1认识三角形学案(第2课时) 鲁教版五四制学习目标: 1、能证明出“三角形内角和等于180”,能发现“直角三角形的两个锐角互余”; 2、按角将三角形分成三类。学习导航:可以用猜想、实践操作、论证的方法总结三角形的内角和知识链接:1、填空:(1)当090时,是 角;(2)当 时,是直角;(3)当90180时,是 角;(4)当 时,是平角。2、如右图,ABCE,(已知)A ,( )B ,( ) (第2题)探究新知1: 根据自己手中的一副特殊的三角板,知道三角形的三个内角和等于180,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块。你发现了什么?小组交流。结论: (回放动画,加深印象)巩固新知1:1、判断:(1)一个三角形的三个内角可以都小于60; ( )(2)一个三角形最多只能有一个内角是钝角或直角; ( )2、在ABC中,(1)C=70,A=50,则B= 度;(2)B=100,A=C,则C= 度;(3)2A=B+C,则A= 度。3、如右图,在ABC中,A求三个内角的度数。解:A+B+C=180,( ) = =从而,A= ,B= ,C= 探究新知2: (第3题)一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。 按三角形内角的大小把三角形分为三类 锐角三角形 (acute trangle)三个内角都是锐角 直角三角形 (right triangle)有一个内角是直角 钝角三角形(obtuse triangle)有一个内角是钝角巩固新知2:1、观察三角形,并把它们的标号填入相应的括号内:锐角三角形( )直角三角形( )钝角三角形( )2、一个三角形两个内角的度数分别如下,这个三角形是什么三角形?(1)30和60 ( ) (2)40和70 ( )(3)50和30 ( )(4)45和45 ( )探究新知3:简单介绍直角三角形,和表示方法,Rt思考:直角三角形中的两个锐角有什么关系?结论: 巩固新知3:1、 观察下列的直角三角形,分别写出它们符号表示、直角边和斜边。 (图1) (图2)(1)图1中的直角三角形用符号写成 ,直角边是 和 ,斜边是 ; (2)图2中的直角三角形用符号写成 ,直角边是 和 ,斜边是 ; 2、如下图,在 RtCDE,C和E的关系是 ,其中C=55, 则E= 度3、如上图, 在RtABC中,A=2B,则A= 度,B= 度; 回顾反思:1、 三角形的三个内角的和等于 ; 2、三角形按角分为三类: (1) (2) (3) 3.直角三角形的两个锐角 附送:第一节 2019年六年级数学下册 11.1认识三角形学案(第二节 第3课时) 鲁教版五四制一、 学习目标: 了解三角形的角平分线、中线,并能在具体的三角形中作出它们。 能够运用三角形的角平分线和中线解决有关问题。二、学习导航:利用画图、折纸等实践活动,并类比角的角平分线和线段的中点学习三角形的角平分线和三角形的中线。三、知识链接:ABC1、如图ABC,你能画出它的角平分线吗?它们之间的数量关系是什么?你能通过折纸的方法得到它吗? 2、 如图线段AB,你能做出它的中点吗?它们之间的数量关系是什么?AB你能通过折纸的方法得到它吗?四、探究新知:(一)三角形的角平分线ABC1、识链接中的ABC变成ABC,你还能画出它的一个内角的平分线吗?在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。2、一个三角形有几条角平分线?它和角的角平分线之间有什么区别与联系呢?3、 每个学习小组拿出准备的锐角三角形、直角三角形和钝角三角形纸片各一个,你能用折纸的方法得到每个三角形的三条角平分线吗?在每个三角形中,三条角平分线之间有怎样的位置关系? ABD(二)三角形的中线C1、如图,在ABC中,点D为BC边的中点,则AD为 ABC的一条中线。你能给三角形的中线下个定义吗? 2、你还能在图上把其它的中线做出来吗?3、以学习小组为单位,把课前准备的三角形纸片(包括锐角三角形、直角三角形和钝角三角形)拿出来,用折纸的方法得到每个三角形的三条中线。它们之间有怎样的位置关系? 五、自我尝试:例:如图,在ABC中,AE是角平分线,B=52,C=78.求AEB的度数。ACEB 生独立完成。回思:本题用到了哪些知识点?六、运用新知:(一)填空:1、如图,AD是ABC的角平分线,那么BAD= = ;BE是中线,那么AC= = 2、如图,若CAO=BAC, CBO=ABO,则BAC的平分线为 ,ABC的平分线为 ,CO平分 。3、如图,D,E是边AC的三等分点,图中有 个三角形,BD是三角形 ADECBCBADEO中 边上的中线,BE是三角形 中 边上的中线。 EACDB 第1题 第2题 第3题友情提示:本题的关键是能够熟练掌握三角形的角平分线和中线,并能够在复杂图形中找出它们。(二)做图题:1、如图,ABC的角平分线AD,BE相交于点F。小明同学说,不用再将C平分,就可以画出C的平分线。你猜他会怎么做?请说明这种做法的合理性。2、有一块三角形空地,园林工人想把它分成三个面积相等的三角形种植不同的花草,并且每块地的边都不要太长,请你帮助他们完成这个任务。(画出示意图)ABCABC3、如图,ABC是等腰三角形,画出顶角A的角平分线和底边BC上的中线。你发现了什么?EACDB 第1题 第2题 第3题 友情提示:第3题得出了等腰三角形三线合一的性质。ABCD(三)解答题1、如图,在ABC中,BAC=60,B=45,AD是ABC的一条角平分线,求ADB的度数。2、如图,在ABC中,AD平分BAC且与BC相交于点D,B=40,BAD=30,求C的度数。(选作题)1、如图,从前有一位老人要把这块三角形土地分成面积相等的六块,分给6个儿子。为了使6个儿子灌溉都方便,还要在这块地里的适当位置打一口井。请问,怎么用简单的方法划分这块土地?井应打在什么位置?画出示意图。ABCABCFD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论