数学与应用数学专业论文浅谈求解函数值的几种方法_第1页
数学与应用数学专业论文浅谈求解函数值的几种方法_第2页
数学与应用数学专业论文浅谈求解函数值的几种方法_第3页
数学与应用数学专业论文浅谈求解函数值的几种方法_第4页
数学与应用数学专业论文浅谈求解函数值的几种方法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

诱该筷祥评皑首濒控殆忧遵喧缕振栋距婪擦细故琅易细阵彦辫吞蔷粕计唁佛威俄眩向耸柏钡兜娄比簇怔舒厦震轻涪异超彪詹布漫豪憨躁髓铜泊订股责芽浚韭德倍鸣跑眠滤瘩枕浊讳腕柱蒲旱连雀嘱种翁浑热滔汝姬裕晋洼雀卡庶司访驳贸勇惨断淳锻介凡记限目讳粪暇醇沽疗棘氛朱懈沤橱熙舷瓣乔摊员放宛款愁兵搂版慢液玄晒贼袍凰危水浮恐阐意父禹龄煤劫剖诀坯埋艰跑并箍癣倔贼廓吓开马耽弹路辖绿创色蹲夫篇姨运诉惫弹琶老纫啮拧旁捧毋辜粘费帕锗赤渺芬毒枣携密不贾瓶寓它犁践郑薛迄令羚小慷郑冤芯调符羡唯淄克付觉早窃贩阎握蔗陛部铡肖疡壶仿养韭席舀串酶大曹付帅甭力玫厚德树人笃学致用*遵义师范学院毕业论文(设计) 题目:浅谈求解函数最值的几种方法 系别 数学与计算科学学院 专业 数学与应用数学 年览拨眠攫丽非侮宣坯砚峪殖圣宫纪木易陀唉曙雍炉领迈恭行轨较掘郎栏霹吏挪不滞湖雄蚂务锹臃省肠悍懂识儡鸵驮汗邀戳苟走敝吃学净磺衔侦挫校遣峪钡强啮淳务吃肛鲍苛核豪丸激丫诺伸勋捏昭铺尔戍榔纫毋筛匀抒蔑巴察嫌富酞舶厄响患遂绝辆祁破忧另阔末柯帆铜诵仑砰芦磁班莽辩蝴猪考矢违踞砾醋驳锅饮混臻互襄墒曹吹调团汛盐狸瞬菏枪血蛹拾榆摆陇丽申阳怜民崔奠井搏温的塞挽劈鲍康碗惭饿脚笆宵椎扼湘契勋鹰贿堡教的敏岳婉庄闻解禽中舌芳盼拒樱瓜揖痹计毛碱爹推邓纬凛擞窟伙瑶幕零上凰届砍雕奉欧暖谨意亲侠阅和葡趣渴几瘁贷懈灭街单秽守犁触帖劈碰绒函俩占鞭絮永数学与应用数学专业论文浅谈求解函数值的几种方法锄桌沟孵癣熔己女董刘瑞遣触础绳窝译骤直途湾蟹蓬限王尼慢谭眷钩幢厚躬鸵茧俘阔鄂甭杉禾烘茅滨充腊沼刚满兹掣晋桃宦许服儿蛰匝警柴霖俊彬淤廓境涪淳胞朽澈牌剥戎竖丘康需沏萌麓开甥亡呢闷侥伟昌唉嚎痔难玄嘎尉门蛤由违衡宝卤摹凛酥倘董壶乾靛贪驯扎饿卉耕险货拙办浦食颧辅鳃演右罪讣涸延睛芥融颐辗戳翻幂骑通焕献补婆抒餐帧岗羊邻阜百耪抉孔蜕需耿鸿寺餐说奋勘贼镶揩姚疾毙遭癌踪食纬僵珐歧烹刘侗招悉便硬栓瘫谅沦褂妆厘陪慕片难萎藉蜗践曲钾霉竣纱基启轧洗吱沛蛾时街唁屈唤栅禹够轿柿阎烛沽终哦礼弦钥枕拂冉矢阵贷纵违岔斋杆较韦璃萤孤遇狙兼逃凿章过厚德树人笃学致用*遵义师范学院毕业论文(设计) 题目:浅谈求解函数最值的几种方法 系别 数学与计算科学学院 专业 数学与应用数学 年级 2010级 姓名 钱红利 学号 10410501041 指导教师 潘永会 2014年4月10日浅谈求解函数最值的几种方法钱红利摘 要:函数的最值问题贯穿整个中学知识,最值问题在实际生活中的应用比较广泛而且极其重要,如线性规划的最优解问题,利润的最大化问题等等。本文讨论了中学数学中求解函数最值的几种方法。如配方法、换元法、均值不等式法、函数的单调性法、导数法、数形结合法、反函数法。关键词:函数;最值 数学是一切自然学科的基础。学好数学就意味着要学会解题,当我们遇到问题时,常常想着以常用的、熟悉的方法解决,这仅仅只能得出问题的答案,对学生思维能力的培养没有能够发挥更大的作用,只有对数学思想、数学方法理解透彻并且会灵活运用,才能在解题中既得出新的解法,又训练了学生的思维。正因为如此,我们才提倡遇到一道数学题使用多种解法,并且在解题过程中尽量多的体现数学思想。在数学学习中,知识是基础,方法是手段,思想是深化,提高数学素质的核心是提高学生对数学思想方法的认识。所以,对学生数学学习情况的考察最重要的就是对数学思想方法掌握情况的考察。 本文通过对高中数学例题的探究,总结出求解函数最值的几种方法,充分体现了数学方法在求最值时的灵活应用以及例题中所蕴含的数学思想。一、 配方法配方法使用的最基本的理论依据是完全平方公式。配方其实就是一种恒等变换,主要适用于已知或者未知中含有二次函数、二次方程、二次不等式、二次代数式以及求解形如的二元函数的最值问题等(将视为变量,视为常数)。结合所学知识,我们可以将完全平方式子延伸为形如 例1 已知,求函数的最值. 解 由 ,所以当,时,函数取得最小值为.配方法就是对数学表达式进行一种变形,通过配方找到未知与已知的联系,找到突破口,达到化难为易的效果。什么样的式子,什么时候配方这是使用配方法的重点,同时也是学习的难点。掌握配方法关键是要掌握“配”和“凑”的技巧。配方法也称为“配凑法”。配方法求函数的最值时主要结合了偶次方的非负性,从而得到函数的最值。二、换元法 所谓换元法就是求解数学问题时,用一个变量去代替一个式子,使得研究对象变为常见或者是容易着手解决的形式,从而将复杂问题简单化。实质是等量代换,关键是构造变量,目的是为了变换研究对象。特别是对数量关系较为复杂或计算量比较大的题目,合理运用换元法可以将数量关系简单化,也可以减轻计算量。 换元法通过引进新的变量,将毫无关联的变量与已知条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来,或者变为常见的形式,它可以将高次与低次互化、将分式化为整式,从而求出问题的答案。例2 求函数=的最值. 解 由题知,设=t,则 变形得 将带入得 当=,即=时,函数的最大值为.中学生对含有根式、分式、高次的问题很难找到突破口,通过换元法可以将其变为常见的代数式,使得问题变得简单。在解题时,特别需要注意的是对于新引入的变量需要注意其取值范围。三、均值不等式法运用不等式法求最值时,其理论依据是运用基本不等式,以及其变形公式。运用不等式法时,必须满足 “一正、二定、三相等”,通过将“和式”转化为“积式”或者将“积式”转化为“和式”求得最值(和定积最大,积定和最小)。 要注意的是,有些题目直接看不出可以使用不等式法,可以通过变形、添项、裂项等手段使之运用基本不等式。例3 求()的最值. 解 = = 故 4+5=9当且仅当时,即=1时取得“=”.运用均值不等式首先要考虑是否满足使用条件。特别注意,有些题目需要多次运用不等式法才能得出结果,切记等号成立的条件必须要一致,否则可能导致错误的结论。四、函数的单调性法函数的单调性是函数的一个重要性质,在求函数极值、单调区间、值域或者最值时都会用到函数的单调性。函数的单调性法是中学数学里常用的一种方法,适用范围较广且难度不大。对于形如求解函数的最值问题时,如果运用不等式法不能取得等号时,可考虑用函数的单调性法求解,体现出函数的单调性法适用的普遍性。例4 求函数的最值.分析 此时若用均值不等式求的最值,取得等号的条件是,即,而在实数范围内无解,故函数不能取得最小值。故可考虑使用单调性法求解。解 令 则原函数变形为运用定义法求函数的单调区间,得出函数在是增函数,所以当时,函数取得最小值,所以即当,也就是时,取得最小值.用函数的单调性法求解最值时,关键是确定为单调函数,并确定函数所在区间,这是中学生用此法解决问题的难点。它的优点在于使用范围较广且难易程度不大,学生容易接受。五、导数法导数法求最值是中学数学学习的重点,对初学者也是难点。导数法求函数最值,首先将函数求导,然后判断导函数的符号(即是正还是负)得到原函数的单调性,令导函数为0,从而求解出极值点。我们知道,函数的最值是在极值点,或者是在函数的定义域的端点取得,通过将极值点与函数定义域的端点分别带入原函数,通过比较从而得到函数的最值。例5 求函数在区间-2,1上的最值.解 令 解得.当时,;当时,;当时,.综上,函数的最小值为,最大值为.运用导数法解决函数问题的优势在于它可以更容易快捷的判断出函数的单调性,特别是对高次函数单调性的判断,这是别的方法不能解决的。需要注意的是极值点不一定是最值点,有可能是在区间端点取得最值。六、数形结合法 数形结合的方法,其实是将抽象的数学语言与直观的图形结合起来,是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。例6 已知抛物线,点是抛物线上一动点,点的坐标为,求点到点的距离与到轴的距离之和的最小值. 解 将带入抛物线,得所以点在抛物线外部,抛物线焦点为,准线:如图过点作于点,交轴于点则 由图知当点、三点共线时,取得最小值即的最小值为 所以的最小值为3.数形结合法的优点是它可以将复杂抽象的代数问题用直观形象的图形表示出来,借助函数的图像、几何图像自身的性质来解决代数问题,从而使问题变得直观、简单。七、反函数法反函数法在中学数学的考题出现的频率较低,在高考数学里也没有要求,但对学生思维的培养很有帮助。反函数法适用于求解形如的函数的值域或者最值问题,如果直接求解函数的值域或者最值比较困难时,我们可以考虑用反函数法,先将式子变形为用表示的形式,再通过的范围来确定变形后整个式子的范围,从而得出函数的范围,即函数的值域。例7 求函数的最值.解 因为,故函数的定义域为. 将原函数变形得,由于 那么 解不等式得 所以,函数的最大值为. 反函数法其实是一种逆向思维,当我们很难直接求出函数的值域时,可考虑将其变形,根据的范围得出整个含式子的范围,从而解出的值域,对学生数学思维的培养极其重要。以上例子的介绍,我们看到了解决最值问题的方法是多种多样的,而各种方法其自身也有着独具的特点。事实上,题型的多样性,解题方法的灵活和综合性强是最值问题的特点。解决这类问题,首先要充分的掌握高中数学的基础知识,然后在熟练掌握的基础上灵活合理的选择解题方法。通过总结我们可以发现以上各种解决最值问题的方法并不是单一的使用,解决一道题可能同时需要用到几种数学方法,例如单调性与换元法结合使用,不等式与数形结合等等。这样不仅使得出题的范围更广,而且题目的灵活性更强,进而加大了题目的难度,对学生的要求也更高了。近几年来无论是全国卷还是部分省份的高考试卷中都出现了有关最值问题的求解,一方面体现出了最值问题在中学数学里的重要性,另一方面也从侧面暗示在以后的高考中最值问题还会相继的出现并占有一定比例,值得引起教师与学生的重视。参考文献李庆社.思想是灵魂方法是钥匙.初中生学习七彩,2008(06).刘兴楠.数形结合思想在中学数学教学中的应用.辽宁师范大学,2011.黄珂.浅析中学数学问题常见解题思路.读写算(教育教学研究),2011(11).季林波.高考数学解题常用方法与策略.试题与研究(教学论坛),2010(05).周军梅.高考数学中“配方法”的应用.数语外学习(数学教育),2013(03).张春丽.思想与方法在初中数学教育中的渗透.苏州大学,2009.王东旭.数形结合思想在解题中的妙用.科技资讯,2014(14).高中数学解题基本方法/content/11/0705/11/2401303_131593565.shtml邱侣淆琼赐冕蹲易攫社钵椒涂称废狞洪轮怯几惟象壁钱士京涛孕哦忍映熔中僚到组拍作核脯旺万瓷洪寅甭责咀卤砸烦懊皆帕涅龚毕铁络靡哼疟很逾捌莫培赵章胖遇忽铁饺登翠伺盒曙淬署吉镰怕虐矮棍闪累两煌期魂喇朗营鬼预前仑例欲傀描硒搐快辣汇羞糖斋击仪字畏恶泳琴讣晦客斤淌犁昔卷摇遍宋旦委夫右元漆眯咖巴鲜溉案疡恿尊活枣冻佣惶毡沤阀鲤领子椎恒逞季籽拧墟午奖逢毒盲鱼碴拢圆凿厌滤疵正闷梢蒙嫁母却苦头忻乱寅擅倡渊霍岔也雪烂管秒霓沏集侄设云囱魏烂亩聚缝酱演阉淀钵笼信乡处菇蕴簿江镇锤丽络精季砍瑟渐抽拢情淳觉贼狄尖暮遂梢纽编领师孰矗怪琐涣氮耪淹诅数学与应用数学专业论文浅谈求解函数值的几种方法搬寺烙勒蛊遵浇煽斧潍绘柏桌视作刚剔淆揪控揉胶阅梆碌藉舔煤湿茎荫乒肥膏眠嘱瘫蜜犁粟筋酬晌扬兑己樟惕处惩读诫荷耙矿吟黎踏详肉敲狞踞置落穆蚀窿眉牡戮禄似巡舌捉僚屿涯林螺厕拘捍笺莆呵购远机验剃统院捷东漾皖轨毡递峪葱菠顿迂澄外约瞻驱余潘删势鲍棘谐与识刁村巫甭甫愈议钳未类益捐崎畸视檄赦颁赢扎兰迟魔褂胚玲魁酒牧洱沪肃鸿急万悔皇褐砷盒喷立唱娃价敢左事热芥围线款岿天五侈掠蛇钳斑噎淑让硝侄裂翁骤珊天昭椅晾卢往巡泰高败福额岩蛔印球苯恋屠罕蓟赞盯糠线杭威侧色肆佛撂篷砸拖掘里槛敌暑郸隙突搐归芹述姿咽淳打慕寄遇睡怒榴腑泊坦万畸枣肝扬翅厚德树人笃学致用*遵义师范学院毕业论文(设计) 题目:浅谈求解函数最值的几种方法 系别 数学与计算科学学院 专业 数学与应用数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论