高一物理知识点总结.doc_第1页
高一物理知识点总结.doc_第2页
高一物理知识点总结.doc_第3页
高一物理知识点总结.doc_第4页
高一物理知识点总结.doc_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档一、力物体的平衡力力的基本概念定义要素效果力物体间的相互作用重力弹力摩擦力改变运动状态形 变力的图示转动平动外力作用形式:拉压、弯曲、扭转恢复:弹性形变、非弹性形变按作用方式按性质分影响显示表示牛顿第三定律力的分类按研究系统按效果分接触力、场力产生原因作用效果内力、外力力的运算平行四边形法则力的合成力的分解按效果分正交分解常见三种力大小方向作用点静摩擦力滑动摩擦力一、知识网络二、画龙点睛概念1、力:力是物体对物体的作用。力是一种作用,可以通过直接接触实现(如弹力、摩擦力),也可以通过场来实现(重力、电场力、磁场力)力的性质:物质性(力不能脱离物体而独立存在);相互性(成对出现,遵循牛顿第三定律);矢量性(有大小和方向,遵从矢量运算法则);效果性(形变、改变物体运动状态,即产生加速度)力的要素:力的大小、方向和作用点称为力的三要素,它们共同影响力的作用效果。力的描述:描述一个力,应描述力的三要素,除直接说明外,可以用力的图示和力的示意图的方法。力的分类:按作用方式,可分为场力(重力、电场力)、接触力(弹力、摩擦力);接效果分,有动力、阻力、牵引力、向心力、恢复力等;接性质分,有重力、弹力、摩擦力、分子力等;按研究系统分,内力、外力。2、重力:由于地球吸引,而使物体受到的力。 (1)重力的产生:由于地球的吸引而使物体受到的力叫重力。 (2)重力的大小:G=mg,可以用弹簧秤测量,重力的大小与物体的速度、加速度无关。 (3)重力的方向:竖直向下。 (4)重心:重力的作用点。重心的测定方法:悬挂法。重心的位置与物体形状的关系:质量分布均匀的物体,重心位置只与物体形状有关,其几何中心就是重心;质量分布不均匀的物体,其重心的位置除了跟形状有关外,还跟物体的质量分布有关。3、弹力 (1)弹力的产生:发生弹性形变的物体,由于要恢复原来的形状,对跟它接触的物体产生力的作用,这种力叫弹力。 (2)产生的条件:两物体要相互接触;发生弹性形变。 (3)弹力的方向:压力、支持力的方向总是垂直于接触面。绳对物体的拉力总是沿着绳收缩的方向。 杆对物体的弹力不一定沿杆的方向。如果轻直杆只有两个端点受力而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。 F2APOF1B例题:如图所示,光滑但质量分布不均的小球的球心在O,重心在P,静止在竖直墙和桌边之间。试画出小球所受弹力。解析:由于弹力的方向总是垂直于接触面,在A点,弹力F1应该垂直于球面所以沿半径方向指向球心O;在B点弹力F2垂直于墙面,因此也沿半径指向球心O。 注意弹力必须指向球心,而不一定指向重心。又由于F1、F2、G为共点力,重力的作用线必须经过O点,因此P和O必在同一竖直线上,P点可能在O的正上方(不稳定平衡),也可能在O的正下方(稳定平衡)。F1F2AB例题: 如图所示,重力不可忽略的均匀杆被细绳拉住而静止,试画出杆所受的弹力。解析:A端所受绳的拉力F1沿绳收缩的方向,因此沿绳向斜上方;B端所受的弹力F2垂直于水平面竖直向上。 由于此直杆的重力不可忽略,其两端受的力可能不沿杆的方向。FABC 杆受的水平方向合力应该为零。由于杆的重力G竖直向下,因此杆的下端一定还受到向右的摩擦力f作用。例题: 图中AC为竖直墙面,AB为均匀横梁,其重为G,处于水平位置。BC为支持横梁的轻杆,A、 B、C三处均用铰链连接。试画出横梁B端所受弹力的方向。解析:轻杆BC只有两端受力,所以B端所受压力沿杆向斜下方,其反作用力轻杆对横梁的弹力F沿轻杆延长线方向斜向上方。 (4)弹力的大小:对有明显形变的弹簧、橡皮条等物体,弹力的大小可以由胡克定律计算。对没有明显形变的物体,如桌面、绳子等物体,弹力大小由物体的受力情况和运动情况共同决定,根据运动情况,利用平衡条件或动力学规律来计算。胡克定律:在弹性限度内,弹簧的弹力与弹簧的伸长(或收缩)的长度x成正比,F=kx,k是劲度系数。除此之外,一般物体的弹力大小,就需例题:如图所示,两物体重分别为G1、G2,两弹簧劲度分别为k1、k2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G2,最后平衡时拉力F=G1+2G2,求该过程系统重力势能的增量。G1x2k2G2x1x1/x2/k1FG1G2k2k1解析:关键是搞清两个物体高度的增量h1和h2跟初、末状态两根弹簧的形变量x1、x2、x1/、x2/间的关系。无拉力F时 x1=(G1+G2)/k1,x2= G2/k2,(x1、x2为压缩量)加拉力F时 x1/=G2/k1,x2/= (G1+G2) /k2,(x1/、x2/为伸长量)而h1=x1+x1/,h2=(x1/+x2/)+(x1+x2)系统重力势能的增量Ep= G1h1+G2h2整理后可得:4、摩擦力 (1)摩擦力的产生;两个相互接触的物体,有相对运动趋势(或相对运动)时产生摩擦力。 (2)作用效果:总是要阻碍物体间的相对运动(或相对运动趋势)。 (3)产生的条件:接触面粗糙;相互接触且挤压;有相对运动(或相对运动趋势)。 (4)摩擦力的方向:总是与物体的相对运动方向(或相对运动趋势方向)相反。FGGFF1F2 fFN (5)摩擦力的大小:静摩擦力的大小与外力的变化有关,而与正压力无关,要计算静摩擦力,就需根据物体的运动状态,利用平衡条件或动力学规律来计算求解,其可能的取值范围是0FfFm;滑动摩擦力的大小与正压力成正比,即F=FN,其中的FN表示正压力,不一定等于重力G;为动摩擦因数,与接触面的材料和状况有关。例题:如图所示,用跟水平方向成角的推力F推重量为G的木块沿天花板向右运动,木块和天花板间的动摩擦因数为,求木块所受的摩擦力大小。 解析:由竖直方向合力为零可得FN=Fsin-G,因此有:f =(Fsin-G)FAB例题:如图所示,A、B为两个相同木块,A、B间最大静摩擦力Fm=5N,水平面光滑。拉力F至少多大,A、B才会相对滑动?解析:A、B间刚好发生相对滑动时,A、B间的相对运动状态处于一个临界状态,既可以认为发生了相对滑动,摩擦力是滑动摩擦力,其大小等于最大静摩擦力5N,也可以认为还没有发生相对滑动,因此A、B的加速度仍然相等。分别以A和整体为对象,运用牛顿第二定律,可得拉力大小至少为F=10N(研究物理问题经常会遇到临界状态。物体处于临界状态时,可以认为同时具有两个状态下的所有性质。)av相对例题: 小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。解析:物体受的滑动摩擦力的始终和小车的后壁平行,方向竖直向上,而物体的运动轨迹为抛物线,相对于地面的速度方向不断改变(竖直分速度大小保持不变,水平分速度逐渐增大),所以摩擦力方向和运动方向间的夹角可能取90和180间的任意值。5、矢量和标量 (1)在物理学中物理量有两种:一是矢量(即既有大小,又有方向的物理量),如力、位移、加速度等;另一种是标量(只有大小,没有方向的物理量),如体积、路程、功、能等。(2)矢量的合成均遵循平行四边形法则,而标量的运算则用代数加减。(3)一直线上的矢量合成,可先规定正方向,与正方向相同的矢量方向均为正,与之相反则为负,然后进行加减。6、力的合成(1)一个力如果产生的效果与几个力共同作用所产生的效果相同,这个力就叫做那几个的合力,而那几个力就叫做这个力的分力,求几个力的合力叫力的合成。(2)力的合成遵循平行四边形法则,如求两个互成角度的共点力F、F的合力,可以把表示F、F的线段作为邻边,作一平行四边形,它的对角线即表示合力的大小和方向。 (3)共点的两个力F、F的合力F的大小,与两者的夹角有关,两个分力同向时合力最大,反向时合力最小,即合力的取值范围为。7、力的分解(1)由一个已知力求解它的分力叫力的分解。(2)力的分解是力的合成的逆过程,也同样遵循平行四边形法则。(3)由平行四边形法则可知,力的合成是唯一的,而力的分解则可能多解。但在处理实际问题时,力的分解必须依据力的作用效果,答案同样是唯一的。(4)把力沿着相互垂直的两个方向分解叫正交分解。如果物体受到多个力的共同作用时,一般常用正交分解法,将各个力都分解到相互垂直的两个方向上,然后分别沿两个方向上求解。F1F2FOF1F2FO平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。 由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。 在分析同一个问题时,合矢量和分矢量不能同时使用。也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。ABva 矢量的合成分解,一定要认真作图。在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。各个矢量的大小和方向一定要画得合理。在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45。例题: A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大? 解析:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。GFBF 当a1=0时,G与 FB二力平衡,所以FB大小为mg,方向竖直向上。 当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。A B例题: 轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大可能值。GF1F2N解析:以与滑轮接触的那一小段绳子为研究对象,在任何一个平衡位置都在滑轮对它的压力(大小为G)和绳的拉力F1、F2共同作用下静止。而同一根绳子上的拉力大小F1、F2总是相等的,它们的合力N是压力G的平衡力,方向竖直向上。因此以F1、F2为分力做力的合成的平行四边形一定是菱形。利用菱形对角线互相垂直平分的性质,结合相似形知识可得dl =4,所以d最大为 8、两个力的合力与两个力大小的关系两力同向时合力最大:FF+F,方向与两力同向;两力方向相反时,合力最小:F,方向与两力较大者同向;两力成某一角度时,三角形每一条边对应一个力,由几何知识知道:两边之和大于第三边,两边之差小于第三边,即此合力的范围是。合力可以大于等于两力中的任一个力,也可以小于任一个力当两力大小一定时,合力随两力夹角的增大而减小,随两力夹角的减小而增大9、共点力平衡的几个基本概念(1)共点力:几个力作用于一点或几个力的作用线交于一点,这几个力称为共点力。(2)物体的平衡状态:静止(速度、加速度都等于零)、匀速直线运动、匀速转动。(3)共点力作用下物体的平衡条件:物体所受的各力的合力为零。规律1、平衡条件的推论 推论(1):若干力作用于物体使物体平衡,则其中任意一个力必与其他的力的合力等大、反向推论(2):三个力作用于物体使物体平衡,若三个力彼此不平行则这三个力必共点(作用线交于同一点). 推论(3):三个力作用于物体使物体平衡,则这三个力的作用线必构成封闭的三角形2、三力汇交原理:物体在作用线共面的三个非平行力作用处于平衡状态时,这三个力的作用线必相交于一点3、解答平衡问题的常用方法 (1)拉密原理:如果在共点的三个力作用下物体处于平衡状态,那么各力的大小分别与另外两个力夹角的正弦成正比,其表达式为(2)相似三角形法 (3)正交分解法:共点力作用下物体的平衡条件(F=0)是合外力为零,求合力需要应用平行四边形定则,比较麻烦,通常用正交分解法把矢量运算转化为标量运算。4、动态平衡问题: 动态平衡问题是指通过控制某一物理量,使物体的状态发生缓慢变化,而在这变化过程中,物体又始终处于一系列的平衡状态GF2F1例题: 重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化? F1F2G解析:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。应用三角形定则,G、F1、F2三个矢量应组成封闭三角形,其中G的大小、方向始终保持不变;F1的方向不变;F2的起点在G的终点处,而终点必须在F1所在的直线上,由作图可知,挡板逆时针转动90过程,F2矢量也逆时针转动90,因此F1逐渐变小,F2先变小后变大。(当F2F1,即挡板与斜面垂直时,F2最小)5、物体的受力分析 明确研究对象 在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决。研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力。按顺序找力 必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力)。只画性质力,不画效果力 画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复。需要合成或分解时,必须画出相应的平行四边形(或三角形) 在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不能再分析合力,千万不可重复。ABC例题: 如图所示,倾角为的斜面A固定在水平面上。木块B、C的质量分别为M、m,始终保持相对静止,共同沿斜面下滑。B的上表面保持水平,A、B间的动摩擦因数为。当B、C共同匀速下滑;当B、C共同加速下滑时,分别求B、C所受的各力。 f2G1+G2N2解析:先分析C受的力。这时以C为研究对象,重力G1=mg,B对C的弹力竖直向上,大小N1= mg,由于C在水平方向没有加速度,所以B、C间无摩擦力,即f1=0。 再分析B受的力,在分析 B与A间的弹力N2和摩擦力f2时,以BC整体为对象较好,A对该整体的弹力和摩擦力就是A对B的弹力N2和摩擦力f2,得到B受4个力作用:重力G2=Mg,C对B的压力竖直向下,大小N1= mg,A对B的弹力N2=(M+m)gcos,A对B的摩擦力f2=(M+m)gsin由于B、C 共同加速下滑,加速度相同,所以先以B、C整体为对象求A对B的弹力N2、摩擦力f2,并求出a ;再以C为对象求B、C间的弹力、摩擦力。 f2G1+G2N2av这里,f2是滑动摩擦力N2=(M+m)gcos, f2=N2=(M+m)gcos沿斜面方向用牛顿第二定律:(M+m)gsin-(M+m)gcos=(M+m)a可得a=g(sin-cos)。B、C间的弹力N1、摩擦力f1则应以C为对象求得。aN1G1 f1v 由于C所受合力沿斜面向下,而所受的3个力的方向都在水平或竖直方向。这种情况下,比较简便的方法是以水平、竖直方向建立直角坐标系,分解加速度a。 分别沿水平、竖直方向用牛顿第二定律: f1=macos,mg-N1= masin,可得:f1=mg(sin-cos) cos N1= mg(cos+sin)cos 由本题可以知道:灵活地选取研究对象可以使问题简化;灵活选定坐标系的方向也可以使计算简化;在物体的受力图的旁边标出物体的速度、加速度的方向,有助于确定摩擦力方向,也有助于用牛顿第二定律建立方程时保证使合力方向和加速度方向相同。6、物体平衡问题的一般解题步骤 (1)审清题意,选好研究对象。 (2)隔离研究对象,分析物体所受外力,画出物体受力图。 (3)建立坐标系或确定力的正方向 (4)列出力的平衡方程并解方程 (5)对所得结果进行检验和讨论 FFGGvvF合例题: 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是A.探测器加速运动时,沿直线向后喷气 B.探测器加速运动时,竖直向下喷气C.探测器匀速运动时,竖直向下喷气 解析:探测器沿直线加速运动时,所受合力F合方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,因此喷气方向斜向下方。匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。选C例题:重G的均匀绳两端悬于水平天花板上的A、B两点。静止时绳两端的切线方向与天花板成角。求绳的A端所受拉力F1和绳中点C处的张力F2。 F1A BG/2F1F2G/2CPOOF2解析:以AC段绳为研究对象,根据判定定理,虽然AC所受的三个力分别作用在不同的点(如图中的A、C、P点),但它们必为共点力。设它们延长线的交点为O,用平行四边形定则作图可得:FG例题:用与竖直方向成=30斜向右上方,大小为F的推力把一个重量为G的木块压在粗糙竖直墙上保持静止。求墙对木块的正压力大小N和墙对木块的摩擦力大小f。解析:从分析木块受力知,重力为G,竖直向下,推力F与竖直成30斜向右上方,墙对木块的弹力大小跟F的水平分力平衡,所以N=F/2,墙对木块的摩擦力是静摩擦力,其大小和方向由F的竖直分力和重力大小的关系而决定: 当时,f=0;当时,方向竖直向下;当时,方向竖直向上。OABPQ例题:有一个直角支架AOB,AO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是mgFNA.FN不变,f变大 B.FN不变,f变小 C.FN变大,f变大 D.FN变大,f变小解析:以两环和细绳整体为对象求FN,可知竖直方向上始终二力平衡,FN=2mg不变;以Q环为对象,在重力、细绳拉力F和OB压力N作用下平衡,设细绳和竖直方向的夹角为,则P环向左移的过程中将减小,N=mgtan也将减小。再以整体为对象,水平方向只有OB对Q的压力N和OA 对P环的摩擦力f作用,因此f=N也减小。答案选B。二、直线运动一、知识网络概念1、质点:定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。2、位置、位移和路程位置:质点在空间所处的确定的点,可用坐标来表示。位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。3、时间与时刻时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等4、速度和速率平均速度:v=s/t,对应于某一时间(或某一段位移)的速度。平均速度是矢量,方向与位移s的方向相同。公式,只对匀变速直线运动才适用。瞬时速度:对应于某一时刻(或某一位置)的速度。当t0时,平均速度的极限为瞬时速度。瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。简称速度平均速率:质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平均速率。平均速率是标量。只有在单方向的直线运动中,平均速度的大小才等于平均速率。平均速率是表示质点平均快慢的物理量瞬时速率:瞬时速度的大小。是标量。简称为速率。5、加速度速度的变化:vvtv0,描述速度变化的大小和方向,是矢量。加速度:是描述速度变化快慢的物理量。公式:av/t。是矢量。在直线运动中,若a的方向与初速度v0的方向相同,质点做匀加速运动;若a的方向与初速度v0的方向相反,质点做匀减速运动6、匀速直线运动:定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体在做匀速直线运动匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。匀速直线运动的规律:,速度不随时间变化。s=vt,位移跟时间成正比关系。匀速直线运动的规律还可以用图象直观描述。s-t图象(位移图象):依据S = vt不同时间对应不同的位移, 位移S与时间t成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速直线运动的速度。(有)所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t1时间内的位移S1)以及可直接读出发生任一位移S2所需的时间t2。v-t图象,由于匀速直线运动的速度不随时间而改变, 所以它的速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。例题: 小球从3m高处落下,被地板弹回,在1m高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m(B)3m,1m(C)3m,2m(D)4m,2m 解析:小球从3m高处落下,被地板弹回又上升1米,小球整个运动轨迹的长度是4m;而表示小球位置的改变的物理量位移的大小为2m,其方向为竖直向下。 答:此题应选(D)。例题:图2-2是一个物体运动的速度图线。从图中可知AB段的加速度为_m/s2,BC段的加速度为_m/s2,CD段的加速度为_m/s2,在这段时间内物体通过的总路程为_m。 解析:AB段的加速度为: AB段物体做匀减速直线运动,所以加速度是负的。而BC段物体做匀速直线运动,故a=0 CD段物体做匀加速直线运动,故加速度为 又因AB段的平均速度为同法求得CD段的平均速度 物体在AB段、BC段、CD段运动的时间分别为t1=4s,t2=2s,t3=3s,故物体在这段时间内运动的总路程为 S=v1t1+v2t2+v3t3 =(24+12+2.53)m =17.5m 答:此题应填-0.5,0,1,17.5 研究质点的运动,首先要选定参照物。参照物就是为了研究物体运动,而被我们假定不动的那个物体。由于选定不同参照物,对于同一个物体的运动情况,包括位置、速度、加速度和运动轨迹的描述都可能不同,这就是运动的相对性。例题:关于人造地球通讯卫星的运动,下列说法正确的是: (A)以地面卫星接收站为参照物,卫星是静止的。 (B)以太阳为参照物,卫星是运动的。 (C)以地面卫星接收站为参照物,卫星的轨迹是圆周。 (D)以太阳为参照物,卫星的轨迹是圆周。 解析:地球同步卫星的轨道被定位在地球赤道平面里,定位在赤道的上空,它绕地心转动的周期与地球自转的周期相同,因此地面上的人看地球同步卫星是相对静止的。 答:此题应选(A)、(B)、(D)。7、匀变速直线运动定义:物体在一条直线上运动,如果在任何相等的时间内速度变化相等,这种运动叫做匀变速直线运动,即a为定值。若以v0为正方向,则a0,表示物体作匀加速直线运动;a0,表示物体作匀减速运动。8、匀变速直线运动的速度及速度时间图象可由,即匀变速直线运动的速度公式,如知道t = 0时初速度v0和加速度大小和方向就可知道任意时刻的速度。应指示,v0 = 0时,vt = at(匀加),若,匀加速直线运动,匀减速直线运动vt = v0at,这里a是取绝对值代入公式即可求出匀变速直线运动的速度。匀变速直线运动速度时间图象,是用图象来描述物体的运动规律,由匀变速直线运动速度公式:vt = v0 + at,从数学角度可知vt是时间t的一次函数,所以匀变速直线运动的速度时间图象是一条直线即当已知:v0 = 0(或)a的大小给出不同时间求出对应的vt就可画出。从如右图图象可知:各图线的物理意义。图象中直线过原点直线是v0 = 0,匀加速直线运动,图象中直线是,匀加速直线运动。图象是匀减速直线运动。速度图象中图线的斜率等于物体的加速度,以直线分析,tga,斜率为正值,表示加速度为正,由直线可知v = v2v1 v2,而两小球到达出口时的速率v相等。又由题意可知两球经历的总路程s相等。由牛顿第二定律,小球的加速度大小a=gsin,小球a第一阶段的加速度跟小球a/第二阶段的加速度大小相同(设为a1);小球a第二阶段的加速度跟小球a/第一阶段的加速度大小相同(设为a2),根据图中管的倾斜程度,显然有a1 a2。根据这些物理量大小的分析,在同一个v-t图象中两球速度曲线下所围的面积应该相同,且末状态速度大小也相同(纵坐标相同)。开始时a球曲线的斜率大。由于两球两阶段加速度对应相等,如果同时到达(经历时间为t1)则必然有s1s2,显然不合理。考虑到两球末速度大小相等(图中vm),球a/ 的速度图象只能如蓝线所示。因此有t1 t2,即a球先到。规律1、匀变速直线的规律基本公式:速度公式:位移公式:速度位移关系公式:平均速度公式:匀变速直线运动中牵涉到v0、vt、a、s、t五个物理量,其中只有t是标量,其余都是矢量。通常选定v0的方向为正方向,其余矢量的方向依据其与v0的方向相同或相反分别用正、负号表示。如果某个矢量是待求的,就假设其为正,最后根据结果的正、负确定实际方向。匀变速直线运动的一些重要推论做匀变速直线运动的物体在某段时间内的平均速度等于这段时间中间时刻的瞬时速度做匀变速直线运动的物体在某段位移中点的瞬时速度等于初速度v0和末速度vt平方和一半的平方根连续相等时间内的位移差等于恒量:s2-s1=s3-s2=sn-sn-1=at2。初速度为零的匀加速直线运动的重要特征:连续相等时间末的瞬时速度比:vt:v2t:v3t:vnt1:2:3:n。ts,2ts,nts内的位移比:st:s2t:snt1:4:9:n2。连续相等时间内的位移比:s1:s2:sn1:3:5:(2n-1)。通过连续相同位移所用时间之比:t1:t2:tn1:(例题:一辆汽车正以15m/s的速度行驶,在前方20m处突然亮起红灯,司机立即刹车,刹车过程中汽车加速度的大小是6m/s2。求刹车后3s末汽车的速度和车距红绿灯有多远? 解析:刹车后汽车做匀减速直线运动。车停时速度vt=0,故刹车所用时间可用速度公式求出,由此来判断汽车是否已在3s前停止了。 解:汽车刹车后停止时vt=0,代入速度公式,求刹车时间t。 0=v0at 故3秒末汽车速度为零,再用速度与位移的关系式算刹车距离 车距红绿灯20m18.75m=1.25m例题:汽车从静止开始做匀加速直线运动,经过时间t1后改做匀减速直线运动。匀减速运动经过时间t2汽车停下来。汽车的总位移为S,汽车在整个运动过程中的最大速度为_。 解析:汽车的 v-t图如图所示,图中的v即所求的最大速度。因为前后两段运动的平均速度都等于,故由下式来解题 即: 此题还可以由图线来解,因v-t图的三角形面积即表示总位移,故: S=v(t1+t2) 即 答:此题应填。例题:一质点由A点出发沿直线AB运动,行程的第一部分是加速度为a1的匀加速直线运动,接着以加速度a2做匀减速运动,抵达B点时刚好停止,苦AB长度是S,则质点运动所需时间为_。 解析:设v是质点做匀加速运动的末速度 v=a1t1 v又是质点做匀减运动的初速度,故 0=v-a2t2 v=a2t2 质点运动所需时间t与t1、t2关系 t=t1+t2 由式联立可得 由平均速度的公式 将式代入式 再把式代入上式 质点运动所需时间 答:此题应填。 例题:为了测定某辆轿车在平直路上起动时间的加速度(轿车起动时的运动可近似看作匀加速运动),某人拍摄了一张在同一底片上多次曝光的照片,如图所示。如果拍摄时每隔2秒曝光一次,轿车车身总长为4.5m,那么这辆轿车的加速度约为: (A)1m/s(B)2m/s(C)3m/s(D)4m/s 解析:照片上汽车的像在标尺上约占3大格,汽车长4.5m,所以标尺上每1大格相当于1.5m的距离。由汽车像的前头来计量,第一个像到第二个像间是8大格,第二个像到第三个像间是13.5大格。因此 S1=81.5m=12mS2=13.51.5m=20m 因T=2s,所求轿车的加速度 答:此题应选(B)。例题: 两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知A.在时刻t2以及时刻t5两木块速度相同B.在时刻t1两木块速度相同C.在时刻t3和时刻t4之间某瞬间两木块速度相同D.在时刻t4和时刻t5之间某瞬时两木块速度相同解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体明显地是做匀速运动。由于t2及t5时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t3、t4之间,因此本题选C。例题:物体在恒力F1作用下,从A点由静止开始运动,经时间t到达B点。这时突然撤去F1,改为恒力F2作用,又经过时间2t物体回到A点。求F1、F2大小之比。解析:设物体到B点和返回A点时的速率分别为vA、vB, 利用平均速度公式可以得到vA和vB的关系。再利用加速度定义式,可以得到加速度大小之比,从而得到F1、F2大小之比。画出示意图如右。设加速度大小分别为a1、a2,有: a1a2=45,F1F2=45 特别要注意速度的方向性。平均速度公式和加速度定义式中的速度都是矢量,要考虑方向。本题中以返回A点时的速度方向为正,因此AB段的末速度为负。2、运动学中的追赶问题匀减速运动物体追赶同向匀速物体时,恰能追上或恰好追不上的临界条件:即将追及时,追赶者速度等于被追赶者速度(也就是追赶者速度大于或等于被追赶者速度时能追上;当追赶者速度小球被追赶者速度时,追不上)初速度为零的匀加速运动物体追赶同向匀速运动物体时,追上之前两者具有最大距离的条件是:追赶者速度等于被追赶者的速度。被追的物体作匀减速运动,一定要注意追上前该物体是否已停止运动。3、自由落体运动定义:不计空气阻力,物体由空中从静止开始下落的运动。自由落体运动是初速度为零,加速度为g的匀加速直线运动。地球表面附近的重力加速度g的大小一般取9.8m/s2;粗略计算时可取g=10m/s2,g的方向为竖直向下。自由落体的运动规律 (1) (2) (3) (4)由于自由落体的初速度为零,故可充分利用比例关系。例题:从楼顶上自由落下一个石块,它通过1.8m高的窗口用时间0.2s,问楼顶到窗台的高度是多少米?(g取10m/s2)解法一:设楼顶到窗台(窗口下沿)的高度为h,石块从楼顶自由下落到窗台用时间t,则有下列二式成立 h=gt2(1) h-1.8=g(t-0.2)2(2) 由(1)与(2)联立解得t值 t=1s 代入(1)式可得 h=5m 解法二:设石块通过窗口上沿的瞬时速度为v0,通过窗口下沿的瞬时速度为v2。石块从窗口上沿到下沿做初速度不为零的匀加速直线运动,且加速度为g,设窗口高为h1,则 h1=vot1+g(1) 式中t1为石块通过窗口的时间。由(1)式可解得再用速度与位移关系求vt 这个vt也是石块从楼顶自由落下到窗台时的瞬时速度。设楼顶到窗台的高度为h 例题:物体从某一高度自由落下,到达地面时的速度与在一半高度时的速度之比是: (A):1(B):2(C)2:1(D)4:1解法一:设物体距地面高为h,自由落下到达地面时间为t,速度为vt h=gt2(1) vt=gt(2) 由(1)与(2)式可解得 (3) 若物体仍由原处开始自由下落至h=处速度为,则 由(3)与(4)联立可得 解法二:由开始时刻计时,物体通过连续相等的、相邻的位移的时间之比为 t1:t2:tn=():(:):() 可知:t1:t2=():(:) 而由速度公式:vt=g(t1+t2) =gt1 答:此题应选(A)。4、竖直下抛运动。定义:物体只在重力作用下,初速度竖直向下的抛体运动叫竖直下抛运动。竖直下抛运动是沿竖直方向的匀加速直线运动。且加速度为g(= 9.8m/s2)。竖直下抛运动的规律: (1) (2) (3) (4)5、竖直上抛运动定义:物体以初速度v0竖直向上抛出后,只在重力作用下而做的运动。三种常见的处理方法:分段法:将整个竖直上抛运动可分为两上衔接的运动来处理,即上升运动和下落运动上升运动:从抛出点以初速度为v0,加速度为g的匀减速直线运动。(tv0/g)下落运动:从最高点开始为自由落体运动。(当tv0/g时作自由落体的运动时间为t=t-v0/g)。整体法:将上升阶段和下落阶段统一看成是初速度向上,加速度向下的匀减速直线运动,其规律按匀减速直线运动的公式变为:特别要注意的是:上述三式中均是取v0的方向(即竖直向上)为正方向。即速度vt向上为正,向下为负(过了最高点以后);位移h在抛出点上方为正,在抛出点下方为负。从运动的合成观点看:是竖直向上以v0为速度的匀速直线运动和竖直向下的自由落体运动的合运动。竖直上抛运动的几个特点:物体上升到最大高度时的特点是vt = 0。由公式可知,物体上升的最大高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论