



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于函数的数学教学方案 一、教学目的 1使学生理解自变量的取值范围和函数值的意义。 2使学生理解求自变量的取值范围的两个依据。 3使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。 4通过求函数中自变量的取值范围使学生进一步理解函数概念。 二、教学重点、难点 重点:函数自变量取值的求法。 难点:函灵敏处变量取值的确定。 三、教学过程() 复习提问 1函数的定义是什么?函数概念包含哪三个方面的内容? 2什么叫分式?当x取什么数时,分式x+2/2x+3有意义? (答:分母里含有字母的有理式叫分式,分母0,即x3/2。) 3什么叫二次根式?使二次根式成立的条件是什么? (答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数0。) 4举出一个函数的实例,并指出式中的变量与常量、自变量与函数。 新课 1结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。 2结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是: (1)自变量取值范围是使函数解析式(即是函数表达式)有意义。 (2)自变量取值范围要使实际问题有意义。 3讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。 推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。 4讲解P93中例3。结合例3引出函数值的意义。并指出两点: (1)例3中的4个小题归纳起来仍是三类题型。 (2)求函数值的问题实际是求代数式值的问题。 补充例题 求下列函数当x=3时的函数值: (1)y=6x-4;(2)y=-5x2;(3)y=3/7x-1;(4)。 (答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。) 小结 1解析法的意义:用数学式子表示函数的方法叫解析法。 2求函数自变量取值范围的两个方法(依据): (1)要使函数的解析式有意义。 函数的解析式是整式时,自变量可取全体实数; 函数的解析式是分式时,自变量的取值应使分母0; 函数的解析式是二次根式时,自变量的取值应使被开方数0。 (2)对于反映实际问题的函数关系,应使实际问题有意义。 3求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。 练习:P94中1,2,3。 作业:P95P96中A组3,4,5,6,7。B组1,2。 四、教学注意问题 1注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。 2注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。 3注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论