LM567-原理及应用.doc_第1页
LM567-原理及应用.doc_第2页
LM567-原理及应用.doc_第3页
LM567-原理及应用.doc_第4页
LM567-原理及应用.doc_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文讨论锁相环电路,介绍NE567单片音频解码器集成电路。此音调解码块包含一个稳定的锁相环路和一个晶体管开关,当在此集成块的输入端加上所先定的音频时,即可产生一个接地方波。此 音频解码器可以解码各种频率的音调。例如检测电话的按键音等。此音频解码器还可以用在BB机、频率监视器和控制器、精密振荡器和遥测解码器中。567的基本工作状况有如一个低压电源开关,当其接收到一个位于所选定的窄频带内的输入音调时,开关就接通。换句话说567可做精密的音调控制开关。通用的567还可以用做可变波形发生器或通用锁相环电路。当其用作音调控制开关时,所检测的中心频率可以设定于0.1至500KHz内的任何值,检测带宽可以设定在中心频率14%内的任何值。而且,输出开关延迟可以通过选择外电阻和电容在一个宽时间范围内改变。电流控制的567振荡器可以通过外接电阻R1和电容器C1在一个宽频段内改变其振荡频率,但通过引脚2上的信号只能在一个很窄的频段(最大范围约为自由振荡频率的14%)改变其振荡频率。因此,567锁相电路只能“锁定”在预置输入频率值的极窄频带内。567的积分相位检波器比较输入信号和振荡器输出的相对频率和相位。只有当这二个信号相同时(即锁相环锁定)才产生一个稳定的输出,567音调开关的中心频率等于其自由振荡频率,而其带宽等于锁相环的锁定范围。图3所示为567用作音调开关时的基本接线图。输入音调信号通过电容器C4交流耦合到引脚3,这里的输入阻抗约为20K。插接在电源正电源端和引脚8之间的外接输出负载电阻RL与电源电压有关,电源电压的最大值为15V,引脚8可以吸收达100mA的负载电流。引脚7通常接地,面引脚4接正电源,但其电压值需最小为4.75V,最大为9V。如果注意节流,引脚8也可接到引脚4的正电源上。振荡器的中心频率(f0)也由下式确定:f01.1(R1C1)(1)这里电阻的单位是K,电容的单位是uF,f0的单位为KHz。将方程(1)进行相应移项,可得电容C1之值:C11.1/(f0R1)(2)利用这二个公式,电容和电阻的值均可确定,电阻R1之值应在2至20K的范围内。然后,再由(2)式确定电容值。 此振荡器在引脚6上产生一个指数型锯齿波,而在引脚5上则产生一个方波。此音调开关的带宽(以及PLL的锁定范围)则由C2及567内部的一个3.9K电阻共同确定。而此电路的输出开关延迟则由C3及集成电路内的一个电阻共同确定。图4和图5所示为如何使567产生精密的方波输出。从引脚6处可以获得非线性锯齿波,但其用途有限,不过,在引脚5上可获得性能极佳的方波。如图4所示,其输出方波的上升时间和下降时间为20nS。此方波的峰到峰幅值等于电源电压减去1.4V。这种方波发生器和负载特性极佳,任何大于1K的电阻性负载均不会影响电路的功能。另外,此方波发生器的输出也可以加至低阻抗负载,如图5所示,引脚8输出端的峰值电流高达100mA,但波形略差。利用前述的振荡频率和电容计算公式(1)和(2),即可确定这类振荡器的各种参数。同样的,R1必须限制在2至20K的范围内。为使计算简化,节约时间,决定振荡频率的元件数值也可以由图6所示的诺模图上直接读出。例如,需要此567振荡器工作在10KHz,C1和R1的值可以是0.055uF和2K,或者是0.0055uF和20K。在567的引脚2上加一控制电压,即可使振荡器的工作频率在一个窄范围内微调百分之几。如果加上控制电压,引脚2应接去耦电容C2,其值应大致为C1的2倍。图4和图5的电路可以用不同的方式修改,如图7至图10所示。在图7中,占空比或传号/空号之比对所产生的波形而言是完全可变的,借助微调电位器R2,其变化范围为271至127。另外,在每个工作周期内,C1交替充放电,充电是经电阻R1、二极管D1和R2的左侧,而放电则通过电阻R1、二极管D2和R2的右侧。只是随着传号/空号比率的改变,工作频率略有改变。图8所示的电路可以产生正交方波,此振荡器在引脚5和8上的二个方波输出有90的相位差。在此电路中,输入引脚3通过接地。如果在引脚3上加有2.8V以上的偏置电压,则引脚8上的方波有180相移。图9和图10所示为定时电阻值最大可为500K左右的振荡器的电路。这样,定时电容C1之值即可按比例减小。在这二个电路中,在567的引脚6和R1、C1的节点间接有一个缓冲级。在图9中,这个缓冲级是一级晶体管射极跟随器。踞遗憾的是,这一级的引入使波形的对称性略差。相对应的是,图10所示电路以一级运算放大器跟随器作为缓冲级。这样就不影响波形的对称性。567的五个输出:567的五个输出端子。其中二个(引脚5和6)提供振荡器的输出波形,而第三个输出端子引脚8,则如前所述为567的主要输出口。其余的二个输出端为此解码器的引脚1和2。引脚2与锁相环的相位检波器输出端相接,在内部被静态偏置到3.8V。当567接收到带内输入信号时,此偏置电压随之改变,且在典型的0.95至1.05倍振荡器自由振荡频率范围内,偏置电压的变化与输入信号频率呈线性关系。其斜率为每频偏百分之一有20mV(即20mV/ f0)。图11所示为当567作为音调开关时,引脚2输出和引脚8输出之间的时间关系。图中所示为在两种带宽(14%和7%)下的时间关系。引脚1给出567正交相位检波的输出。当音调锁定时,在引脚1上的平均电压是此电路带内输入信号幅度的函数,如图12的传输函数所示。当引脚1上的平均电压被下拉到3.8V门限值之下时,集电极在引脚8上的内部输出晶体管就导通。带宽的确定:当567被用作音调开关时,其带宽(中心频率的百分数)的最大值约为14%。此值与25至250mV均方根值的带内信号电压成正比。但是,当信号电压由200变至300mV时,则不影响带宽。同时,带宽反比于中心频率f0和电容器C2的乘积。实际带宽为:BW1070BW的单位为中心频率的百分数(%),而且,Vi200mVRMS。式中Vi的单位为V-RMS,C2的单位为uF。通过试探和误差处理来选择C2,一开始可选择C2的值为C1的2倍。随后可增加C2的值以减小带宽,也可减小C2的值以增加带宽。检测带宽的对称性:所谓检测整容的对称性就是测量此带宽与中心频率的对称程度。对称性的定义如下:(fmaxfmin2f0)/2f这时fmax和fmin是相应于所检测频带二边沿的频率。如果一个音调开关的中心频率为100KHz,而带宽为10KHz,频带的边沿频率对称于95KHz和105KHz,这样,其对称性为0%。但是,如果其频带相当不对称,边沿频率为100KHz和110KHz,其对称值增加到5%。如果需要,可以用微调电位器R2和47K的电阻R4在567的引脚2上加一外偏微调电压,以使对称值减至0,如图13所示。将电位器的中间滑动触点向上移则中心频率降低,向下移则中心频率升高。硅二极管D1和D2用作温度补偿。以图13所示的典型电路为基础,很容易设计出实用的音调开关。频率控制元件电阻R1和电容C1各值的选定可利用图6的诺模图。电容C2容量的选择可以上述讨论为基础,由实验确定。一开始可用其容量为C1的两倍的电容,然后,若有需要可调整其值,以给出所要求的信号带宽。如果对于频带的对称性要求严格,可如图13所示,加一对称性调整级。最后,使C3之值为C2的2倍。并检查此电路的响应。如果C3太小,引脚8上的输出可能会在开关期间因过渡历程而发生脉冲。如C3选择适当,则整个电路设计完毕。可以从一个音频输入馈入任意多个567音调开关,以构成任何所希望规模的多音调开关网络。图14和图15是二种实用的两级开关网络。在图14中的电路有双音解码器的作用。在二个输入输入信号中有任一个出现时,都可激励出一个信号输出。图中,二个音调开关是由是一个信号源激励的,而其输出则由一个CD4001B型CMOS门集成块来进行或非处理。图15所示为二个567音调开关并行联接,其作用有中一个相对带宽为24%的单个音调开关。在此电路中,IC1音调开关的工作频率设计成比IC2音调开关的工作频率高1.12倍。因此,它们的转接频带是叠合的。LM567通用音调译码器集成电路的应用 。 567为通用音调译码器,当输入信号于通带内时提供饱和晶体管对地开关,电路由I与Q检波器构成,由电压控制振荡器驱动振荡器确定译码器中心频率。用外接元件独立设定中心频率带宽和输出延迟。主要用于振荡、调制、解调、和遥控编、译码电路。如电力线载波通信,对讲机亚音频译码,遥控等。用外接电阻20比1频率范围 逻辑兼容输出具有吸收100mA电流吸收能力。 可调带宽从0%至14% 宽信号输出与噪声的高抑制 对假信号抗干扰 高稳定的中心频率 中心频率调节从0.01Hz到500kHz 电源电压5V-15V,推荐使用8V。 应用举例:输入端接104电容,输出端接上拉电阻10K,C1、C2为1uF。R1、C1决定振荡频率,一般C1为104电容,R1为10K-200K。电源电压为8V。单通道红外遥控电路在不需要多路控制的应用场合,可以使用由常规集成电路组成的单通道红外遥控电路。这种遥控电路不需要使用较贵的专用编译码器,因此成本较低。单通道红外遥控发射电路如图1所示。在发射电路中使用了一片高速CMOS型四重二输入“与非”门74HC00。其中“与非”门3、4组成载波振荡器,振荡频率f0调在38kHz左右;“与非”门1、2组成低频振荡器,振荡频率f1不必精确调整。f1 对f0进行调制,所以从“与非”门4输出的波形是断续的载波,这也是经红外发光二极管传送的波形。几个关键点的波形如图2所示,图中B波形是A点不加调制波形而直接接高电平时B点输出的波形。由图2可以看出,当A点波形为高电平时,红外发光二极管发射载波;当A点波形为低电平时,红外发光二极管不发射载波。这一停一发的频率就是低频振荡器频率f1。 在红外发射电路中为什么不采用价格低廉的低速CMOS四重二输入“与非”门CD4011,而采用价格较高的74HC00呢?主要是由于电源电压的限制。红外发射器的外壳有多种多样,但电源一般都设计成3V,使用两节5号或7号电池作电源。虽然CD4011的标称工作电压为318V,但却是对处理数字信号而言的。因为这里CMOS“与非”门是用作振荡产生方波信号的,即模拟应用,所以它的工作电压至少要4.5V才行,否则不易起振,影响使用。而74HC系列的CMOS数字集成电路最低工作电压为2V,所以使用3V电源便“得心应手”了。74HC00的引脚功能如图3所示。图4为红外接收解调控制电路。图中,IC1是LM567。LM567是一片锁相环电路,采用8脚双列直插塑封。其、脚外接的电阻和电容决定了内部压控振荡器的中心频率f2,f21/1.1RC。其、脚通常分别通过一电容器接地,形成输出滤波网络和环路单级低通滤波网络。脚所接电容决定锁相环路的捕捉带宽:电容值越大,环路带宽越窄。脚所接电容的容量应至少是脚电容的2倍。脚是输入端,要求输入信号25mV。脚是逻辑输出端,其内部是一个集电极开路的三极管,允许最大灌电流为100mA。LM567的工作电压为4.759V,工作频率从直流到500kHz,静态工作电流约8mA。LM567的内部电路及详细工作过程非常复杂,这里仅将其基本功能概述如下:当LM567的脚输入幅度25mV、频率在其带宽内的信号时,脚由高电平变成低电平,脚输出经频率/电压变换的调制信号;如果在器件的脚输入音频信号,则在脚输出受脚输入调制信号调制的调频方波信号。在图4的电路中我们仅利用了LM567接收到相同频率的载波信号后脚电压由高变低这一特性,来形成对控制对象的控制。弄清了LM567的基本工作原理和功能后,再来分析图4电路便非常简单了。IC1是红外接收头,它接收发射器发出的红外信号,其中心频率与发射器载波频率f0相同,经IC1解调后,在输出端OUT输出频率为f1的方波信号,也就是与图1中A点波形相同的信号。我们将LM567的中心频率调到与发射器中“与非”门1、2振荡频率相同,即使f2= f1。则当发射器发射信号时,LM567便开始工作,脚由高电平变为低电平,利用这个变化的电平便可去控制各种对象。利用图4的电路,我们可以做成遥控开关,遥控家里的各种家用电器。实际上,利用图1和图4所示的电路,我们也可以较容易地将其改造成多路遥控电路。方法是:在发射器(图1)中将电阻R变成若干挡不同的数值,由此形成若干种频率不同的调制信号;在接收电路中,设置若干只LM567,其输入均来自红外接收头,各个LM567的振荡频率不同但与发射端一一对应。这样当发射器按压不同的按钮,接入不同的调制信号时,在接收端对应的LM567的脚的电平就会发生变化,由此形成多路控制。严格说来,这属于一种频分多路,与数字编译码多路控制相比,缺点是调试比较复杂。但在有些场合,如在多路报警中,也有其一席之地。因在报警应用场合中,需要解决两路以上同时报警的问题时,用时分多路存在复杂的同步问题,在频宽允许的情况下用频分多路则很容易解决。 超声波遥控电路1、超声波遥控电灯开关这种遥控开关,电路简单,且免调试,非常适合初学者制作。一、工作原理 为发射电路。电路采用分立器件构成,VT1和VT2以及R1 R4、C1、C2构成自激多谐振荡器,超声发射器件B被联接在VT1和VT2的集电极回路中,以推挽形式工作,回路时间常由R1、C1和R4、C2确定。超声发射器件B的共振频率使多谐振荡电路触发。因此,本电路可工作在最佳频率上。 .(图2)为接收电路,结型场效应VT1构成高输入阻抗放大器,能够很好地与超声接收器件B相匹配,可获得较高接收灵敏度及选频特性。VT1采用自给偏压方式,改变R3即可改变VT1的表态工作点,超声接收器件B将接收到的超声波转换为相应的电信号,经VT1和VT2两极放大后,再经VD1和VD2进行半波整流变为直流信号,由C3积分后作用于VT3和基极,使VT3由截止变为导通,其集电极输出负脉冲,触发器JK触发D,使其翻转。JK触发器Q端的电平直接驱动继电器K,使K吸合或释放。由继电器K的触点控制电路的开关。二、元件选用发射电路中,VT1和VT2用CS9013或CS9014等小功率晶体管,100。超声发射器件用SE0540T,电源GB采用一块9V叠层电池,以减小发射器体积和重量。接收电路中,VT1和3DJ6或是3DJ7等小功率结型场效应晶体管。VT2 VT3用CS9013,100。VD1和VD2用IN4148。JK触发器263B。超声接收器件用SE0540R,与SE0540T配对使用。继电器K用HG4310型。超声波遥控电扇变速器一、工作原理 (图3)为发射电路。它采用的是国产蝙蝠牌FSA5A型电风扇的遥控发射器。这种发射器具有体积小、耗电省、工作可靠、电路简单等特点。在使用时,每按一下发射键,发射器发出约为500ms的40KHZ的超声波。发射电路的工作原理如下。VT2和VT3构成直接耦合正反馈振荡电路,B为40KHz超声发射器件,并兼振荡电路反馈先频元件。因此,此电路可准确地振荡于超声发射器件的中心频率40KHZ。VT1和R2、C1组成500ms延时电路。R1、VD1是C1的放电通路,当按下发射键S时,VT2构成的振荡电路工作,发出超声波,同时,电源通过R2向C1充电,当C1上的电位充到1.4V时(约经过500ms),VT1导通,VT2基极以及VT3集电极电位下降为0.3V左右,振荡器停止工作,当松开发射键S时,C1通过VD1和R1迅速放电,为下一次发射作好准备.VD3和R4构成发射指示电路,当按发射键时,VD3发光。 (图4)为接收电路。CMOS非门D1 D3由R1偏置为线性放大器,总增益可达60bB以上,由于CMOS电路的输入阻抗较高,故能够很好与超声接收器件匹配。放大后的信号由C1耦合给锁相环译码器LM567的输入端3脚。当输入信号的频率落在其中心频率上时,LM567的逻辑输出端8脚由高电平变为低电平。选频声控开关此声控开关可由一特定音调的(500到2000Hz)声音来控制任一电器的开或关。由于它有一定的选频作用,故误动作的机率小。电路设计为用音频电信号(达100mV)来控制,其控制信号源可以是电话、收音机、电唱机、录音机,从其中适当点用屏蔽线引来。如果想用声波遥控,加一个驻极体话筒和一级前置放大即可。本装置的电路如图16所示。它的中心器件是一块拾音集成电路LM567,以及一个50mA的继电器。一定音调的音频信号加至LM567的输入端(3脚)后,经内电路的放大、选频等处理,在其输出端8脚输出低电平(没有输入信号时为高电平)。这时,与其相接的一个PNP管(2N3906)导通,使接在集电极电路中的继电器吸动,从而以其接点去控制被控电器。若用以开机,则使用继电器的常开、动合接点;若用来关机,则应采用常合、动开式接点。响应频率决定于接于第5、6脚的电位器和电容器的值,故调整10k电位器可调节其响应频率。本机可接收的音频范围为5002000Hz。二极管1N4001用以保护晶体三极管。2N3906可以用其它任何型号的中、小功率PNP硅管代替。红外光电探测器在静电对靶喷雾中的应用摘 要:详细介绍了红外光电探测器,以及用红外光电探测器探测棉花的位置,实现对靶喷雾的设计。 农业是国民经济的基础,先进的植保技术是农业生产丰收的保障,现代植物病虫害防治仍然以化学药剂防治为主,我国常规施药方法和施药器械落后,大量农药流失到水体、土壤和大气中,农药的利用率低,防治成本高,并造成严重的环境污染,对某些害虫防治效果欠佳,先进的施药方法和施药器械的研究与开发对我国农业的持续发展,降低生产成本,特别是保护环境具有重要的作用。对靶喷雾是新近发展起来的高效低污染施药新技术,AGTECH公司研制的“Tree-sense”智能喷雾器采用了“沙漠风暴”中使用的探测敌人坦克的三维图像传感器,它能够根据作物的距离、形状进行有效喷雾;DURAND WAYLAND公司的“Smart Spray”喷雾器、“Tree-see”喷雾器使用了先进的声纳系统来进行目标的准确定位,这些装置精度高,但价格昂贵。根据我国国情,我们设计了红外光电探测器来进行目标的探测,并结合高压静电使雾滴带电,带电的雾滴作定向运动飞向植株,最后吸附在植株上,其命中率显著提高。这种红外探测器研制成本低、灵敏度高、体积小,加上与静电结合,就会达到与上述系统基本相同的效果。 设计思路本文主要讲述红外光电探测器的研制。红外线是一种不可见光,采用专用的红外发射管和接收管,可以有效地防止周围可见光的干扰,进行无接触探测,不损伤被测物体。该探测器安装在电动小车上。红外对靶喷雾主要用在棉花的幼苗期和生长期间,当棉花处于幼苗期时,棉苗分散,对靶容易。当处于生长期时,棉花的茎部有一定的高度,此时采用红外线照射茎部,通过反射,确定目标。考虑到棉农十分注重田间管理,棉田杂草很少,所以红外光电探测器受到的干扰很小,可以忽略。图1 红外探测器的原理图架图2 探测距离图3 555状态图图4 红外发射与接收元件的方向性红外光电探测器的设计 如图1所示,LM567集成锁相环路解码器及其外围元件组成锁相电路。三极管V1、红外线发射管H1及电阻R1、R9组成红外线发射电路,锁相电路的振荡信号由LM567的脚输出,送至V1放大,驱动红外线发射管发出方波信号。集成电路mA741、红外接收管H2及其外围元件组成红外线接收电路,红外线接收管H2将接收到的红外线信号转变成本身阻值的变化,经电阻R3、电容C3耦合到mA741的脚,由mA741进行放大,555电路、三极管V2及其外围相关器件组成延迟输出电路,用来控制电磁阀打开的时间,当探测到棉花时,LED绿灯亮,继电器通电,常开触点闭合,开始喷雾。 红外线光电探测器探测棉花是靠红外线反射来完成的,在设定的有效探测范围内,如果没有棉花,红外线接收管接收不到反射红外光信号,LM567的脚输出高电平,555的脚输出低电平,三极管V2截止,电磁阀关闭不喷雾;当探测到棉花时,红外线接收管收到被棉花反射回来的红外线信号,经转换电路的转换,送至放大电路A741进行放大,其放大信号送至LM567的脚与本身振荡信号比较,当与本身振荡信号同频率时,LM567的脚输出低电平,555的脚输出高电平,三极管V2导通,继电器通电,电磁阀打开开始喷雾。 为了防止隔行探测产生误动作,可以通过调节探测有效距离L(L2为了保证喷头打开时间,由555、R7、C9组成单稳态延迟电路如图1。V2的输出脉宽Tp0=R7C9ln31.1R7C9。如果在电路的暂稳态持续时间内有干扰触发脉冲,则该脉冲不起作用,如图3,这就保证了电磁阀打开的时间。输出脉宽Tp0可以通过R7调节。 在红外发射与接收中要考虑到发射元件与接收元件都存在着方向性。因此存在着一个位置,在这个位置上传感器可获得最大的灵敏度。另外,还存在着一个传感器可以正常工作的范围,如图4所示。 利用LM567脚脉冲信号驱动红外发光管,除了利用锁相环路解码器LM567提高检测灵敏度并消除太阳光等背景光的干扰外,还能使红外发光管在平均输入功率不变的情况下比直流驱动方式增加一倍的发射功率。在红外探测器前端加红外滤光片可去除可见光,使红外光通过,进一步提高了抗干扰能力。 结语 该电路的最大特点是实现了红外线发射与接收工作频率的同步自动跟踪,即红外发射部分不设专门的脉冲发生电路,而直接从接收部分的检测电路引入脉冲(实为LM567的锁相中心频率信号),既简化了线路和调试工作,又防止了周围环境变化和元件参数改变造成的收、发频率不一致,使电路稳定性和抗干扰能力大大增强。该探测器在实验中取得了很好的效果,与非对靶喷雾相比大大提高了喷雾的命中率。 LM567红外避障电路D1发射红外线,D2接收红外信号。LM567第、脚为译码中心频率设定端,一般通过调整其外接可变电阻W改变捕捉的中心频率。图中红外载波信号来自LM567的第5角,也即载波信号与捕捉中心频率一致,能够极大的提高抗干扰特性。音频译码器LM567作用器要领 1、LM567输出部分与普通数字IC等有所不同,其内部是一个集电极开路的NPN型三极管,使用时,脚与正电源间必须接一电阻或者其它负载,才能保证IC译码后输出低电平。 2、实验表明:LM567接通电源瞬间,脚会输出一低电平脉冲。因此,用于作遥控器译码控制时,应在输出端后加装RC积分延时电路,以免每次断电后,重新复电时产生误动作。 3、LM567第、脚为译码中心频率设定端,一般通过调整其外接可变电阻W改变频率,经笔者实验发现,当W阻值变为0或无限大时,脚电平状态即使无信号输入时也会变为低电平,因此,在调整W时,不能使其短路或开路。 4、LM567的工作电压对译码器的中心频率有所影响,故最好采用稳压供电。 5、LM567脚外接电容决定着锁相环捕捉带宽,容量越小,捕捉带宽越宽,但使用时,不可为增大捕捉带宽而一味减小电容容量,否则,不但会降低抗干扰能力,严重时还会出现误触发现象,降低整机的可靠性1. 概述 集成锁相环路解码器LM567是美国国家半导体公司生产的56系列集成锁相环路中的一种,其同类产品还有美国Signetics公司的SE567/INE567等。LM567是一个高稳定性的低频集成锁相环路解码器,由于其良好的噪声抑制能力和中心频率稳定性而被广泛应用于各种通讯设备中的解码以及AM、FM信号的解调电路中。 2. LM567内部结构及工作原理 LM567为8脚直插式封装,其内部结构、引脚定义及外围元件连接方法如图1所示。 LM567内部包含了两个鉴相器PD1及PD2、放大器AMP、电压控制振荡器VCO等单元电路。鉴相器PD1、PD2均采用双平衡模拟乘法器电路,在输入小信号情况下(约几十mV),其输出为正弦鉴相特性,而在输入大信号情况下(几百mV以上),其输出转变为线性(三角)鉴相特性。锁相环路输出信号由电压控制振荡器VCO产生,电压控制振荡器的自由振荡频率(即无外加控制电压时的振荡频率)与外接定时元件RTCT的关系式为: f01/1.1RTCT 选用适当的定时元件,可使LM567的振荡频率在0.01Hz500kHz范围内连续变化。电路工作时,输入信号在鉴相器PD1中与VCO的输出信号鉴相,相差信号经滤波回路滤波后,成为与相差成一定比例的电压信号,用于控制VOC输出频率f0跟踪输入信号的相位变化。若输入信号频率落在锁相环路的捕获带内,则环路锁定,在振荡器输出频率与输入频率相同时,二者之间只有一定相位差而无频率差。 环路用于FM信号解调时,脚2输出的经过滤波后的相差信号可作为FM解调信号的输出,而当环路用于单音解调时,电路则利用PD2输出的相差信号。 PD2的工作方式与PD1略有不同,它是利用压控振荡器输出的信号f0经90移相后再与输入信号进行鉴相,是一正交鉴相器。在环路锁定情况下,PD2的两个输入信号在相位上相差约为90,因而PD2的输出电压达到其输出范围内的最大值,再经运算放大器AMP反相,在其输出端输出一个低电平。AMP的输出端为OC输出方式,低电平输出时可吸收最大100mA的输出电流。该端口的低电平输出信号除可由上拉电阻转换为电压信号以与TTL或CMOS接口电路相匹配外,还可直接驱动LED及小型继电器等较大负载。LM567的电气参数如表1所列。值得一提的是,接在2脚的环路滤波电容C2与内部电阻一道构成锁相环路的RC积分滤波器,该滤波器时间常数的大小在很大程度上决定了锁相环路的环路带宽BW的大小。当BW较大时,捕获范围大而稳定性差。减小BW则正好相反,其稳定性较好而捕获范围变小。LM567的环路带宽BW可由下式计算: BW=1070(Vif0C2)1/2 式中,Vi为输入信号的幅值(rms) C2为滤波电容的容量(单位为F) 实际上,由上式计算得出的并不是环路带宽BW的实际值,而是环路带宽BW与环路中心频率f0的百分比,其值再乘上100才是锁相环路的实际捕获带宽。实际应用中调整C2的大小可使BW在04范围内变化。BW宽度与f0C2乘积之间的关系如图2。LM567在正常工作时的最小输入信号为20mV。当用于单音解码时,其工作特性为:当LM567信号输入端加入幅度为20mV以上的交流信号且频率落入f0BW范围内时,输出端输出一个低电平的检测信号,这就是所谓的“频率继电器”特性。利用这一特性,LM567可广泛应用于各种低频单一频率信号的解码。 3. LM567的应用 根据实际工作需要,我们利用LM567的“频率继电器”工作方式,设计了一个脉冲光电检测电路,用于生产线上工作的计数及工位检测。具体电路如图3所示。 检测中的红外光源由红外发光管D提供,其驱动信号来自一个由CMOS门构成的振荡器,重复频率约为10kHz。采用脉冲信号驱动红外发光管,除了利用锁相环路解码以提高检测灵敏度并消除背景光的干扰外,还能使发光管在平均输入功率不变的情况下比直流驱动方式增加1倍的瞬时发射功率。在接收端,为提高检测灵敏度,在光敏接收监视至锁相环路解码器之间插入一级交流放大器,以对光敏接收管

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论