




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,10 The Z-Transform,10.1 The z-Transform,10. The Z-Transform,hn,zn,yn,Definition of z-transform for general xn:,(1) Definition of z-transform,10 The Z-Transform,(2) Region of convergence (ROC),ROC: Range of r for X(z) to convergeRepresentation: A. Inequality B. Graphics,Example 10.1 10.2 10.3 10.4,10 The Z-Transform,10.2 The Region of Convergence for the z-Transform,Property1: The ROC of X(z) consists of a ring in the z-plane centered about the origin.,z-plane,Re,Im,10 The Z-Transform,Property2: The ROC does not contain any poles.Property3: If xn is of finite duration, then the ROC is the entire z-plane, except possibly z=0 and/or z= .Property4: If xn is a right-sided sequence, and if the circle |z|=r0 is in the ROC, then all finite values of z for which |z|r0 will also be in the ROC.,Example 10.5,10 The Z-Transform,z-plane,10 The Z-Transform,Property5: If xn is a left-sided sequence, and if the circle |z|=r0 is in the ROC, then all finite values of z for which 0|z|r0 will also be in the ROC.,10 The Z-Transform,z-plane,10 The Z-Transform,Property6: If xn is two sided, and if the circle |z|=r0 is in the ROC, then the ROC will consists of a ring in the z-plane that includes the circle |z|=r0.,z-plane,Re,Im,Example 10.7,10 The Z-Transform,Property7: If the z-transform X(z) of xn is rational, then its ROC is bounded by poles or extends to infinity.Property8: If the z-transform X(z) of xn is rational, and if xn is right sided, then the ROC is the region in the z-plane outside the outermost pole.,10 The Z-Transform,Property9: If the z-transform X(z) of xn is rational, and if xn is left sided, then the ROC is the region in the z-plane inside the innermost nonzero pole.,Example 10.8,10 The Z-Transform,10.3 The Inverse z-Transform,The way for inverse z-transform:(1) Partial fraction expansion(2) Integration for complex function(3) Power series,Example 10.9 10.10 10.11 10.12 10.13 10.14,Frequency response(Fourier transform): (1) Analytic form: (2) Geometric method:,10 The Z-Transform,10.4 Geometric Evaluation of the Fourier Transform From the Pole-zero plot,10.4.1 First-order systems,The impulse response :,z-Transform:,10 The Z-Transform,10 The Z-Transform,10.5 Properties of the z-Transform,10.5.1 Linearity,10 The Z-Transform,10.5.2 Time shifting,10 The Z-Transform,10.5.3 Scaling in the z-domain,10 The Z-Transform,10.5.4 Time Reversal,10 The Z-Transform,10.5.5 Time Expansion,10 The Z-Transform,10.5.6 Conjugation,10 The Z-Transform,10.5.7 The Convolution Property,Example 10.15 10.16,10 The Z-Transform,10.5.8 Differentiation in the z-Domain,Example 10.17 10.18,10 The Z-Transform,10.5.9 The Initial-Value Theorem,Example 10.19,10 The Z-Transform,10.5.10 Summary of Properties,Table 10.1,10.6 Some Common z-Transform Pairs,Table 10.2,10 The Z-Transform,10.7 Analysis and Characterization of LTI Systems Using z-Transform,Y(z)=X(z)H(z),hnor H(z),xn,X(z),Y(z),yn,So, system function: H(z)=Y(z)/X(z),10 The Z-Transform,10.7.1 Causality,A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.,z-plane,ROC including infinity(z=),10 The Z-Transform,A discrete-time LTI system with rational system function H(z) is causal if and only if : (a) the ROC is the exterior of a circle outside the outermost pole; and (b) with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot be greater than the order of the denominator.,Example 10.20 10.21,10 The Z-Transform,10.7.2 Stability,An LTI system is stable if and only if the ROC of its system function H(z) includes the unit circle, |z|=1.,z-plane,z-plane,10 The Z-Transform,A causal LTI system with rational system function H(z) is stable if and only if all of the poles of H(z) lie inside the unit circle - i.e., they must all have magnitude smaller than 1.,z-plane,Example 10.23 10.24,10 The Z-Transform,10.7.3 LTI Systems Characterized by Linear Constant-Coefficient Difference Equations,Linear constant-coefficient difference equation:,Taking z-transforms of both sides:,So that the system function:,Example 10.25,10 The Z-Transform,10.7.4 Examples Relating System Behavior to the System Function,Example 10.26 10.27,10 The Z-Transform,10.8 System Function Algebra and Block Diagram Representation,10.8.1 System Functions for Interconnections of LTI Systems,10 The Z-Transform,10.8.2 Block Diagram Representations for Causal LTI Systems Described by Difference Equations and Rational System Function,Example 10.28 10.29 10.30 10.31,10 The Z-Transform,Example 10.28,10 The Z-Transform,Example 10.29,10 The Z-Transform,10 The Z-Transform,Example 10.30,System function:,Difference equation:,Block-Diagram in three forms:(a) Direct form:(b) Cascade form:(c) Parallel form:,10 The Z-Transform,10 The Z-Transform,10 The Z-Transform,Example 10.31,System function:,10 The Z-Transform,10.9 The Unilateral z-Transform,Example 10.32 10.33 10.34,Definition:,or,10.9.1 Examples of Unilateral z-Transfo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 唐山市人民医院肿瘤破裂出血急诊介入考核
- 2025第二人民医院护理流程再造考核
- 忻州市中医院创伤骨科专科护士资格考核
- 长治市中医院产科主任医师资格认证
- 2025年中国木器涂料项目创业计划书
- 唐山市中医院人事管理专业英语与合同翻译试题
- 网咖加盟合同7篇
- 2025第二人民医院质量管理体系考核
- 北京市人民医院脐带血穿刺技术操作准入考核
- 2025年可充电应急灯项目投资分析及可行性报告
- 2024年国家义务教育质量监测-四年级心理健康测试卷
- 中医培训课件:《中药熏洗技术》
- 青春期生理变化
- 国家开放大学《Python语言基础》实验4:条件分支结构基本应用参考答案
- 船舶火灾的危险性及预防范本
- 历年大学英语四六级翻译真题
- 平安医院创建管理制度
- 公司月度安全生产综合检查表
- 青岛版数学一年级上册《20以内的进位加法》单元整体备课设计
- 西南大学研究生开题报告(模板)
- 全国中学生英语能力竞赛(NEPCS)高一组决赛(含答案和听力)
评论
0/150
提交评论