




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,10 The Z-Transform,10.1 The z-Transform,10. The Z-Transform,hn,zn,yn,Definition of z-transform for general xn:,(1) Definition of z-transform,10 The Z-Transform,(2) Region of convergence (ROC),ROC: Range of r for X(z) to convergeRepresentation: A. Inequality B. Graphics,Example 10.1 10.2 10.3 10.4,10 The Z-Transform,10.2 The Region of Convergence for the z-Transform,Property1: The ROC of X(z) consists of a ring in the z-plane centered about the origin.,z-plane,Re,Im,10 The Z-Transform,Property2: The ROC does not contain any poles.Property3: If xn is of finite duration, then the ROC is the entire z-plane, except possibly z=0 and/or z= .Property4: If xn is a right-sided sequence, and if the circle |z|=r0 is in the ROC, then all finite values of z for which |z|r0 will also be in the ROC.,Example 10.5,10 The Z-Transform,z-plane,10 The Z-Transform,Property5: If xn is a left-sided sequence, and if the circle |z|=r0 is in the ROC, then all finite values of z for which 0|z|r0 will also be in the ROC.,10 The Z-Transform,z-plane,10 The Z-Transform,Property6: If xn is two sided, and if the circle |z|=r0 is in the ROC, then the ROC will consists of a ring in the z-plane that includes the circle |z|=r0.,z-plane,Re,Im,Example 10.7,10 The Z-Transform,Property7: If the z-transform X(z) of xn is rational, then its ROC is bounded by poles or extends to infinity.Property8: If the z-transform X(z) of xn is rational, and if xn is right sided, then the ROC is the region in the z-plane outside the outermost pole.,10 The Z-Transform,Property9: If the z-transform X(z) of xn is rational, and if xn is left sided, then the ROC is the region in the z-plane inside the innermost nonzero pole.,Example 10.8,10 The Z-Transform,10.3 The Inverse z-Transform,The way for inverse z-transform:(1) Partial fraction expansion(2) Integration for complex function(3) Power series,Example 10.9 10.10 10.11 10.12 10.13 10.14,Frequency response(Fourier transform): (1) Analytic form: (2) Geometric method:,10 The Z-Transform,10.4 Geometric Evaluation of the Fourier Transform From the Pole-zero plot,10.4.1 First-order systems,The impulse response :,z-Transform:,10 The Z-Transform,10 The Z-Transform,10.5 Properties of the z-Transform,10.5.1 Linearity,10 The Z-Transform,10.5.2 Time shifting,10 The Z-Transform,10.5.3 Scaling in the z-domain,10 The Z-Transform,10.5.4 Time Reversal,10 The Z-Transform,10.5.5 Time Expansion,10 The Z-Transform,10.5.6 Conjugation,10 The Z-Transform,10.5.7 The Convolution Property,Example 10.15 10.16,10 The Z-Transform,10.5.8 Differentiation in the z-Domain,Example 10.17 10.18,10 The Z-Transform,10.5.9 The Initial-Value Theorem,Example 10.19,10 The Z-Transform,10.5.10 Summary of Properties,Table 10.1,10.6 Some Common z-Transform Pairs,Table 10.2,10 The Z-Transform,10.7 Analysis and Characterization of LTI Systems Using z-Transform,Y(z)=X(z)H(z),hnor H(z),xn,X(z),Y(z),yn,So, system function: H(z)=Y(z)/X(z),10 The Z-Transform,10.7.1 Causality,A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.,z-plane,ROC including infinity(z=),10 The Z-Transform,A discrete-time LTI system with rational system function H(z) is causal if and only if : (a) the ROC is the exterior of a circle outside the outermost pole; and (b) with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot be greater than the order of the denominator.,Example 10.20 10.21,10 The Z-Transform,10.7.2 Stability,An LTI system is stable if and only if the ROC of its system function H(z) includes the unit circle, |z|=1.,z-plane,z-plane,10 The Z-Transform,A causal LTI system with rational system function H(z) is stable if and only if all of the poles of H(z) lie inside the unit circle - i.e., they must all have magnitude smaller than 1.,z-plane,Example 10.23 10.24,10 The Z-Transform,10.7.3 LTI Systems Characterized by Linear Constant-Coefficient Difference Equations,Linear constant-coefficient difference equation:,Taking z-transforms of both sides:,So that the system function:,Example 10.25,10 The Z-Transform,10.7.4 Examples Relating System Behavior to the System Function,Example 10.26 10.27,10 The Z-Transform,10.8 System Function Algebra and Block Diagram Representation,10.8.1 System Functions for Interconnections of LTI Systems,10 The Z-Transform,10.8.2 Block Diagram Representations for Causal LTI Systems Described by Difference Equations and Rational System Function,Example 10.28 10.29 10.30 10.31,10 The Z-Transform,Example 10.28,10 The Z-Transform,Example 10.29,10 The Z-Transform,10 The Z-Transform,Example 10.30,System function:,Difference equation:,Block-Diagram in three forms:(a) Direct form:(b) Cascade form:(c) Parallel form:,10 The Z-Transform,10 The Z-Transform,10 The Z-Transform,Example 10.31,System function:,10 The Z-Transform,10.9 The Unilateral z-Transform,Example 10.32 10.33 10.34,Definition:,or,10.9.1 Examples of Unilateral z-Transfo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版绿色建筑水电暖安装工程承包合同示范文本
- 2025版商场装修工程环境保护合同
- 2025年新型环保商砼运输服务合同范本
- 2025年水电站电工设施维护承包合同
- 2025年度企业法律风险防范与合规管理咨询服务合同
- 2025年法院审理离婚案件离婚协议书撰写指南及样本
- 2025年度信息安全咨询与技术服务合同
- 2025年新材料研发生产基地厂房转让合同范本
- 2025版私人艺术品买卖合同(含艺术品交易后续跟踪与维护服务)
- 2025租房补贴借款合同专业版范文
- 租房托管班合同(标准版)
- 2025-2026学年苏教版(2024)小学数学二年级上册(全册)教学设计(附目录P226)
- 2025年甘南事业单位笔试试题(含答案)
- 2025年浪浪山小妖怪开学第一课
- 2025-2026秋学生国旗下演讲稿:第1周让我们接过历史的接力棒-抗战胜利纪念日
- 2025年幼儿园食堂从业人员培训测试题(含答案)
- 企业员工职业道德培训教材及案例
- 施工临时用水用电方案(3篇)
- 工贸行业安全知识培训课件
- 医院入院指南
- 2025年三亚市教育局直属公办学校教师招聘考试笔试试卷【附答案】
评论
0/150
提交评论