




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章t检验和Z检验 第一节t检验 以t分布为基础的检验为t检验 在医学统计学中 t检验是非常活跃的一类假设检验方法 医疗卫生实践中最常见的是计量资料两组比较的问题 25例糖尿病患者随机分成两组 甲组单纯用药物治疗 乙组采用药物治疗合并饮食疗法 二个月后测空腹血糖 mmol L 问两种疗法治疗后患者血糖值是否相同 药物治疗 药物治疗合并饮食疗法 1 2 n1 12 15 21 10 85 n2 13 甲组 乙组 总体 样本 推断 t检验 问题提出 根据研究设计 t检验有三种形式 单个样本的t检验配对样本均数t检验 非独立两样本均数t检验 两个独立样本均数t检验 第一节单个样本t检验 又称单样本均数t检验 onesamplettest 适用于样本均数与已知总体均数 0的比较 目的是检验样本均数所代表的总体均数 是否与已知总体均数 0有差别 已知总体均数 0一般为标准值 理论值或经大量观察得到的较稳定的指标值 应用条件 总体标准 未知的小样本资料 如n 50 且服从正态分布 单个样本t检验原理 已知总体 0 未知总体 样本 在H0 0的假定下 可以认为样本是从已知总体中抽取的 根据t分布的原理 单个样本t检验的公式为 自由度 n 1 例5 1 以往通过大规模调查已知某地新生儿出生体重为3 30kg 从该地难产儿中随机抽取35名新生儿 平均出生体重为3 42kg 标准差为0 40kg 问该地难产儿出生体重是否与一般新生儿体重不同 3 确定P值 做出推断结论本例自由度 n 1 35 1 34 查附表2 得t0 05 2 34 2 032 因为t t0 05 2 34 故P 0 05 按 0 05水准 不拒绝H0 差别无统计学意义 尚不能认为该地难产儿与一般新生儿平均出生体重不同 1 建立检验假设 确定检验水准H0 0H1 0 0 052 计算检验统计量 第二节配对样本均数t检验 简称配对t检验 pairedttest 又称非独立两样本均数t检验 适用于配对设计计量资料均数的比较 配对设计 paireddesign 是将受试对象按某些特征相近的原则配成对子 每对中的两个个体随机地给予两种处理 配对设计概述 应用配对设计可以减少实验的误差和控制非处理因素 提高统计处理的效率 配对设计主要有三种情况 1 将受试对象按某些混杂因素 如性别 年龄 窝别等 配成对子 每对中的两个个体随机分配给两种处理 如处理组与对照组 2 同一受试对象或同一标本的两个部分 随机分别进行不同处理 或测量 3 同一受试对象自身前后对照 配对t检验原理 配对设计的资料具有对子内数据一一对应的特征 研究者应关心是对子的效应差值而不是各自的效应值 进行配对t检验时 首选应计算各对数据间的差值d 将d作为变量计算均数 配对样本t检验的基本原理是假设两种处理的效应相同 理论上差值d的总体均数 d为0 现有的不等于0差值样本均数可以来自 d 0的总体 也可以来 d 0的总体 配对t检验原理 可将该检验理解为差值样本均数与已知总体均数 d d 0 比较的单样本t检验 其检验统计量为 实例分析 例5 2有12名接种卡介苗的儿童 8周后用两批不同的结核菌素 一批是标准结核菌素 一批是新制结核菌素 分别注射在儿童的前臂 两种结核菌素的皮肤浸润反应平均直径 mm 如表5 1所示 问两种结核菌素的反应性有无差别 先计算差数的标准差计算差值的标准误 1 建立检验假设 确定检验水准H0 d 0H1 d 0 0 052 计算检验统计量本例 d 39 d2 195 3 确定P值 作出推断结论自由度计算为 n 1 n 1 12 1 11 查附表2 得t0 05 2 11 2 201 本例t t0 05 2 11 P 0 05 拒绝H0 接受H1 差别有统计学意义 可认为两种方法皮肤浸润反应结果有差别 按公式计算 得 例5 5某医生研究脑缺氧对脑组织中生化指标的影响 将乳猪按出生体重配成7对 一组为对照组 一组为脑缺氧模型组 试比较两组猪脑组织钙泵的含量有无差别 表5 5两组乳猪脑组织钙泵含量 g g 例5 6为研究某新的降压药对高血压患者舒张压的影响 随机抽取了10名高血压患者 分别在其用药前和用药后一个月测量其舒张压 试问该降压药对高血压患者的舒张压是否有影响 表5 610名高血压患者用药前后舒张压的测定值 mmHg 第三节两独立样本t检验 两独立样本t检验 twoindependentsamplet test 又称成组t检验 适用于完全随机设计的两样本均数的比较 其目的是检验两样本所来自总体的均数是否相等 完全随机设计是将受试对象随机地分配到两组中 每组患者分别接受不同的处理 分析比较处理的效应 两独立样本t检验要求两样本所代表的总体服从正态分布N 1 12 和N 2 22 且两总体方差 12 22相等 即方差齐性 若两总体方差不等 即方差不齐 可采用t 检验 或进行变量变换 或用秩和检验方法处理 两独立样本t检验原理 两独立样本t检验的检验假设是两总体均数相等 即H0 1 2 也可表述为 1 2 0 这里可将两样本均数的差值看成一个变量样本 则在H0条件下两独立样本均数t检验可视为样本与已知总体均数 1 2 0的单样本t检验 统计量计算公式为 其中 两独立样本t检验原理 Sc2称为合并方差 combined pooledvariance 当两样本标准差S1和S2已知时 合并方差Sc2为 实例分析 例5 325例糖尿病患者随机分成两组 甲组单纯用药物治疗 乙组采用药物治疗合并饮食疗法 二个月后测空腹血糖 mmol L 如表5 2所示 问两种疗法治疗后患者血糖值是否相同 建立检验假设 确定检验水准H0 1 2H1 1 2 0 05 计算检验统计量 代入公式 得 n1 n2 2 12 13 2 23 查t界值表 t0 05 2 23 2 069 由于t t0 05 2 23 P 0 05 按 0 05的水准 拒绝H0 接受H1 差异有统计学意义 故可认为该地两种疗法治疗糖尿病患者二个月后测得的空腹血糖值的均数不同 几何均数资料t检验 服从对数正态分布 先作对数变换 再作t检验 t检验应用条件 两组计量资料小样本比较 样本对总体有较好代表性 对比组间有较好组间均衡性 随机抽样和随机分组 样本来自正态分布总体 配对t检验要求差值服从正态分布 大样本时 用z检验 且正态性要求可以放宽 两独立样本均数t检验要求方差齐性 两组总体方差相等或两样本方差间无显著性 第四节方差不齐时两样本均数检验 当两总体方差不等 方差不齐 时 两独立样本均数的比较 可采用检验 亦称近似t检验方差齐性检验 F检验F检验要求资料服从正态分布检验统计量F值按下列公式计算 n 1 2 n 1 方差齐性检验 为较大的样本方差 为较小的样本方差 检验统计量F值为两个样本方差之比 若样本方差的不同仅为抽样误差的影响 F值一般不会偏离1太远 求得F值后 查附表3 方差齐性检验用的F界值表 得P值 取 0 05水准 若F F0 05 2 P 0 05 拒绝H0 接受H1 可认为两总体方差不等 若F F0 05 2 P 0 05 两总体方差相等 第五节z检验 根据数理统计的中心极限定理 不论变量X的分布是否服从正态分布 当随机抽样的样本例数足够大 样本均数服从正态分布其中 为原来的总体均数 为总体标准差为标准误标准正态变换为 检验原理 当总体标准差 已知 或样本量较大 如n 50 时样本均数与总体均数比较 配对设计样本均数比较和两独立样本均数比较的假设检验 可以计算检验统计量 值标准正态变换后 的界值双侧 单侧 检验原理 成组设计的两样本均数比较的统计量 值计算中 两均数差的标准误为统计量 值的计算公式为 检验 实例分析 例5 4研究正常人与高血压患者胆固醇含量 mg 的资料如下 试比较两组血清胆固醇含量有无差别 正常人组高血压组 检验 实例分析步骤 建立检验假设 确定检验水平 0 05计算统计量 值将已知数据代入公式 得 检验 实例分析步骤 确定P值 作出推断结论本例 10 40 1 96 故P 0 05 按 0 05水准拒绝H0 接受H1 可以认为正常人与高血压患者的血清胆固醇含量有差别 高血压患者高于正常人 第六节假设检验中两类错误 1 b 即把握度 powerofatest 也称检验效能 两总体确有差别 被检出有差别的能力 1 a 即可信度 confidencelevel 重复抽样时 样本区间包含总体参数 m 的百分数 当H0为真时 检验结论拒绝H0接受H1 这类错误称为第一类错误或 型错误 type error 亦称假阳性错误检验水准 就是预先规定的允许犯 型错误概率的最大值 用 表示当真实情况为H0不成立而H1成立时 检验结论不拒绝H0反而拒绝H1 这类错误称为第二类错误或 型错误 type error 亦称假阴性错误 大小用 表示 只取单侧 一般未知 当样本容量一定时 越小越大 越大越小 在实际应用中 往往通过去控制 在样本量确定时 如果要减小 就把取大一些 同时减小 和 唯一的方法就是增加样本含量n 第七节假设检验中的注意事项 1 假设检验结论正确的前提作假设检验用的样本资料 必须能代表相应的总体 同时各对比组具有良好的组间均衡性 才能得出有意义的统计结论和有价值的专业结论 这要求有严密的实验设计和抽样设计 如样本是从同质总体中抽取的一个随机样本 试验单位在干预前随机分组 有足够的样本量等 2 检验方法的选用及其适用条件 应根据分析目的 研究设计 资料类型 样本量大小等选用适当的检验方法 t检验是以正态分布为基础的 资料的正态性可用正态性检验方法检验予以判断 若资料为非正态分布 可采用数据变换的方法 尝试将资料变换成正态分布资料后进行分析 3 双侧检验与单侧检验的选择需根据研究目的和专业知识予以选择 单侧检验和双侧检验中的t值计算过程相同 只是t界值不同 对同一资料作单侧检验更容易获得显著的结果 单双侧检验的选择 应在统计分析工作开始之前就决定 若缺乏这方面的依据 一般应选用双侧检验 4 假设检验的结论不能绝对化假设检验统计结论的正确性是以概率作保证的 作统计结论时不能绝对化 在报告结论时 最好列出概率P的确切数值或给出P值的范围 当P接近临界值时 下结论应慎重 5 正确理解P值的统计意义P是指在无效假设H0的总体中进行随机抽样 所观察到的等于或大于现有统计量值的概率 其推断的基础是小概率事件的原理 即概率很小的事件在一次抽样研究中几乎是不可能发生的 如发生则拒绝H0 因此 只能说明统计学意义的 显著 6 假设检验和可信区间的关系假设检验用以推断总体均数间是否相同 而可信区间则用于估计总体均数所在的范围 两者既有联系又有区别 1 置信区间具有假设检验的主要功能 2 置信区间可提供假设检验没有提供的信息置信区间在回答差别有无统计学意义的同时 还可以提示差别是否具有实际意义 例如 降血压药至少要使血压平均降低10mmHg以上才认为具有临床治疗意义 则说10mmHg是具有实际意义的值 在图6 2中 置信区间 l 3 均不包含原假设H0 意味着相应的差异具有统计学意义 1 还提示差异具有实际意义 2 提示可能具有实际意义 3 提示实际意义不大 图中的 4 与 5 均无统计学意义 但 4 提示样本量不足 5 属于可以接受原假设的情况 返回 3 假设检验提供 而置信区间不提供的信息在统计推断结论为拒绝H0时 假设检验可以报告确切的P值 从而较为精确地说明检验结论的概率保证 置信区间只能在预先确定的置信度l 水平上进行推断 在不能拒绝H0的场合 假设检验可以对检验的功效做出估计 从而可以评价是否在识别差异能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养师考试备考 2025年实操技能冲刺模拟试卷
- 2025年春季英语四六级专项训练:冲刺押题模拟试卷
- 2025年公务员考试行测言语理解专项试卷:逻辑判断与推理能力冲刺押题
- 2025年CPA考试 会计科目全真模拟试卷及解题技巧
- 2026届佛山市普通高中化学高三第一学期期末质量检测模拟试题含解析
- 安徽省示范中学培优联盟2026届高二化学第一学期期末经典试题含答案
- 王牌交易平台拆分课件
- 2026届安徽省部分高中化学高一上期中质量检测模拟试题含解析
- 言情小说竞赛题目及答案
- 第十三讲蛋白质分子设计
- 租车合同免责协议模板
- 《化妆品生产工艺验证指南》
- 影片备案报告范文
- 绿色简约实拍杨善洲介绍
- 2024年11月-矿山隐蔽致灾因素普查
- 电力系统自动化技术培训课件
- 真空断路器拆除施工方案
- 校服供货方案及安排
- 老旧装置安全风险评估报告
- 2024年高中生暑期社会实践活动总结
- 神经根型腰椎病课件
评论
0/150
提交评论