




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2消元- 解二元一次方程组(第一课时) 教学设计学习目标知识目标 通过探索,会运用代入消元法解二元一次方程组.能力目标 通过练习来学习和巩固这种解二元一次方程组的方法.情感目标 体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程,感受“化归”思想.学习重点用代入法解二元一次方程组.学习难点1.代入消元法的基本思想;2.代入法的灵活运用.教学过程(师生活动)设计理念创设情境引入课题播放学生篮球赛录像剪辑体育节要到了篮球是初一(1)班的拳头项目为了取得好名次,他们想在全部22场比赛中得到40分已知每场比赛都要分出胜负,胜队得2分,负队得1分那么初一(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程 那么有哪些方法可以求得二元一次方程组的解呢? 问题情境是学生喜闻乐见的体育活动,激发学生的学习兴趣,增强求知欲,对所学知识产生亲切感。探究新知1、 引导:什么是二元一次方程组的解?(方程组中各个方程的公共解)满足方程的解有:,,满足方程的解有:,这两个方程的公共解是2、师:这个问题能用一元一次方程来解决吗? 学生思考并列出式子 设胜x场,负(22x)场,解方程 2x(22x) =40 解法略 观察:上面的二元一次方程组和一元一次方程有什么关系? 若学生还是感到困难,教师可通过提问进一步引导 (1)在一元一次方程解法中,列方程时所用的等量关系是什么? (2)方程组中方程所表示的等量关系是什么? (3)方程与的等量关系相同,那么它们的区别在哪里? (4)怎样使方程中含有的两个未知数变为只含有一个未知数呢? 结合学生的回答,教师做出讲解 由方程进行移项得y=22x, 由于方程中的y与方程中的y都表示负的场数,故可以把方程中的y用(22-劝来代换, 即得2x+(22x) =40.由此一来,二元化为一元了 解得x=18. 问题解完了吗?怎样求y 将x=18代入方程y=22x,得y=4. 能代入原方程组中的方程来求y吗?代入哪个方程更简便? 这样,二元一次方程组的解是 归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法(板书课题)可以采用观察与估算的方法但很麻烦,故引发学生产生寻找新方法的需求 以退为进的思想 重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据体会未知向已知,陌生向熟悉转化这一重要思想化归思想巩固新知例1 用代入法解方程组本题较简单,直接由学生板演,师生共同评价解:由得 x=y+3 把代入,得 3(y3)-8y14 所以y=1 把y=1代人,得x=2. 所以 解后反思教师引导学生思考下列问题: (1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代? (3)只求出一个未知数的值,方程组解完了吗? (4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便? (5)怎样知道你运算的结果是否正确呢? (与解一元一次方程一样,需检验其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等检验可以口算,也可以在草稿纸上验算) 例2(为例1的变式)解方程组 分析: (1)从方程的结构来看:例2与例1有什么不同? 例1是用x=y3直接代人的而例2的两个方程都不具备这样的条件都不能直接代入另一条方程 (2)如何变形? 把一个方程变形为用含x的式子表示y(或含y的式子表示x) (3)那么选用哪个方程变形较简便呢? 通过观察,发现方程中y的系数为1,因此,可先将方程变形,用含x的代数式表示y,再代入方程求解 解:由得,y=,把代人,得(问:能否代入中?) 3x8()=14, 所以x=10, x=10. (问:本题解完了吗?把y=37代入哪个方程求x较简单?) 把x=10代入,得 y= 所以y=2 所以 (本题可由一名学生口述,教师板书完成)1. 通过例题学习更进一步体会和理解代入消元法的实质,并通过解后问题思考,培养学生主动梳理归纳总结,规范解题过程的良好习惯.2. 通过变式练习促使学生更透彻地理解代入消元法的实质,提高学生的解题能力.小结与作业小结提高交流小结:(通过总结,再次加深学生对知识的掌握程度)说一说:本节课你有哪些收获?合作交流:你从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?与你的同伴交流 学生畅所欲言,互相补充,小组派中心发言人进行总结发言最后,由老师出示幻灯片 代入法的实质是消元,使两个未知数转化为一个未知数一般步骤为: 从方程组中选一个未知数系数比较简单的方程将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=axb的形式; 将y=axb代人方程组中的另一个方程中,消去y,得到关于二的一元一次方程; 解这个一元一次方程,求出x的值; 把求得的x值代人方程y=axb中,求出y的值,再写出方程组解的形式; 检验得到的解是不是原方程组的解这一步不是完全必要的,若能肯定解题无误,这一点可以省略。及时梳理知识,形成模型用代入法解二元一次方程一般步骤。反馈练习1、 教材P93页1.(补充:再改写成用含y的式表示x)2、 教材P93页练习2用代入法解方程组布置作业1、必做题:教科书P97页习题8.2第1题,P97页习题2第2(1)(2)题2、选做题:教科书P93习题8.2第5题本课教育评注(课堂设计理念,实际教学效果及改进设想) 代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题基于这点认识,本课按照“身边的数学问题引入寻求一元一次方程的解法探索二元一次方程组的代入消元法典型例题归纳代入法的一般步骤”的思路进行设计在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学教师创设有趣的情境,引发学生自觉参与学习活动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB61T 870-2014 玉米 先达601规范
- DB61T 828-2014 玉米 兴民糯玉118规范
- 不动产赠与合同常用版样板4篇
- 物资储备库温湿度控制系统方案
- 污水处理厂污水回用设计方案
- 2025浙江台州市温岭市交通旅游集团有限公司面向社会招聘编外人员1人备考练习试题及答案解析
- 2025西咸新区空港新城花园小学见习招聘(8人)考试参考试题及答案解析
- 2025中国人民财产保险股份有限公司巨鹿支公司招聘备考练习题库及答案解析
- 公路建设施工图纸审核方案
- 河北省三河市2024-2025学年七年级下学期期末考试英语试题(含答案无听力)
- 中级注册安全工程师《法律法规》试题及答案
- 2025年汽车转向系统行业需求分析及创新策略研究报告
- 2025年四川省成都市高新区事业单位招聘考试综合类面试真题模拟试卷
- GB/T 7251.10-2025低压成套开关设备和控制设备第10部分:规定成套设备的指南
- 2025年秋统编版语文二年级上册全册课件(课标版)
- 七下期末人教版数学试卷
- 2025新疆巴音郭楞州和硕县面向社会招聘社区工作者7人笔试参考题库附答案解析
- 2025年六安市裕安区石婆店镇公开招考村级后备干部8名笔试备考试题及答案解析
- 2025年事业单位考试题库及参考答案
- 2025年公安机关人民警察(基本级)执法资格等级题库及答案
- 物流客服培训课件
评论
0/150
提交评论