九年级数学上册3.4中位线三角形中位线定理的应用素材1【新华东师大版】.docx_第1页
九年级数学上册3.4中位线三角形中位线定理的应用素材1【新华东师大版】.docx_第2页
九年级数学上册3.4中位线三角形中位线定理的应用素材1【新华东师大版】.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形中位线定理的应用三角形的中位线定理是几何中一个重要定理,它不仅反映了图形间线段的位置关系,而且还揭示了线段间的数量关系,利用三角形中位线定理可以解决许多相关的问题.一、借助中位线定理选择结论例1如图1,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是( ).(A)线段EF的长逐渐增大(B)线段EF的长逐渐减小(C)线段EF的长不变(D)线段EF的长与点P的位置有关分析:由E,F分别为AP,RP的中点,由此可联想三角形的中位线,故连接AR,由于已知条件可知EF为ARP的中位线,根据中位线定理可知EF=AR,由于点P从点C到点D移动的移动过程中,AR始终不变,EF的长度也不变.解:连接AR,E,F分别是PA,PR的中点,EF=AB,AR不变,线段EF的长不变.故选(C).点评:本题通过巧妙地连接AR,把问题转化为三角形中位线问题,借助于中位线的性质俩来解决.二、借助中位线定理求长度例2某花木场有一块如四边形ABCD的空地(如图2),两对角线相等,各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= cm分析:根据E、F分别为BA,BC的中点,可知EF为ABC的中位线,根据中位线定理可得EF=AC,同理可得HG=AC,HE=BD,FG=BD,根据两对角线相等可得EF=FG=GH=HE,由此可求到EF的长,也就求到AC的长.解:E,F分别是BA,BC的中点,EF=AC,同理可得HG=AC,E,H分别是AB,AD的中点,EH=BD,同理可得FG=BD,AC=BD,EF=FG=GH=HE,EF+FG+GH+HE=40cm,EF=10cm,AC=2EF=20cm.点评:根据已知条件的特点,本题是将四边形问题转化为三角形问题,通过多次利用三角形中位线的性质,确定EF的长,进而求到AC的长.三、借助中位线定理说理例3 如图3,在ABC中,BCAC,点D在BC上,且DCAC,ACB的平分线CF交AD于F,点E是AB的中点,连结EF.说明EFCB理由分析:根据E为AB的中点,要说明EF/BC,可说明EF为ABC的中位线,为此,需要证明F为AD的中点.解:CF平分ACB,DCF=ACF.又DC=AC,CF是ACD的中线, 点F是AD的中点. 点E是AB的中点, EF/BD,即 EFBC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论