全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.2.3 正方形的性质一、教学目的1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别.3.通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点1教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系 2教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:对角线相等的菱形是正方形吗?为什么?对角线互相垂直的矩形是正方形吗?为什么?对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?能说“四条边都相等的四边形是正方形”吗?为什么?说“四个角相等的四边形是正方形”对吗?四、课堂引入1做一做:用一张长方形的纸片(如图所示)折出一个正方形学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系问题:什么样的四边形是正方形?正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形所以,正方形具有矩形的性质,同时又具有菱形的性质五、例习题分析例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 如图,分别以ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE. 证明:在正方形ABDE中, AE=AB,EAB=90, 又在正方形ACFG中, AG=AC,GAC=90, EAB=GAC=90. EAC=EAB+BAC, GAB=GAC+BAC, EAC=GAB, EACGAB, EC=GB六、随堂练习1正方形的四条边_ _,四个角_ _,两条对角线_ _2下列说法是否正确,并说明理由对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方形;( )四个角相等的四边形是正方形( )七、课后练习1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF2已知:如图,ABC中,C=90,CD平分ACB,DEB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 综艺节目广告合同范本
- 网络运营入股合同范本
- 绿化养护清洁合同范本
- 绿化材料供货合同范本
- 老师签约录播合同协议
- 老旧维修翻新合同范本
- 聘请业务员的合同协议
- 股权转让阴阳合同范本
- 能否退掉三方协议合同
- 著作授权使用合同范本
- 楷书入门教学课件
- 关于A公司资本结构优化研究
- 2025至2030中国核废料管理行业项目调研及市场前景预测评估报告
- DB52∕T 1842-2024 更年期健康教育规范
- 妊娠合并肺动脉高压的护理
- 2025年青少年科技创新比赛考核试卷及答案
- 2025年人教版小学五年级语文(上册)期中试卷及答案
- 杜邦安全理念培训课件
- 2025高考志愿第五轮学科评估(部分)+第四轮学科评估结果Excel表格
- 工程试验原材料取样课件
- DB32-T 5091-2025 超高分子量聚乙烯纤维热蠕变性能试验方法
评论
0/150
提交评论