《离散型随机变量的分布列》教案3.doc_第1页
《离散型随机变量的分布列》教案3.doc_第2页
《离散型随机变量的分布列》教案3.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

离散型随机变量的分布列教案3教学内容:人教版数学高中选修23离散型随机变量的分布列知识与技能:会求出某些简单的离散型随机变量的概率分布。过程与方法:认识概率分布对于刻画随机现象的重要性。情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。教学重点:离散型随机变量的分布列的概念教学难点:求简单的离散型随机变量的分布列教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,是常数,则也是随机变量 并且不改变其属性(离散型、连续型) 请同学们阅读课本P5-6的内容,说明什么是随机变量的分布列?二、讲解新课:1. 分布列:设离散型随机变量可能取得值为 x1,x2,x3,取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列 2. 分布列的两个性质:任何随机事件发生的概率都满足:,并且不可能事件的概率为0,必然事件的概率为1由此你可以得出离散型随机变量的分布列都具有下面两个性质:Pi0,i1,2,; P1+P2+=1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 3.两点分布列:例1.在掷一枚图钉的随机试验中,令如果针尖向上的概率为,试写出随机变量 X 的分布列解:根据分布列的性质,针尖向下的概率是() 于是,随机变量 X 的分布列是01P像上面这样的分布列称为两点分布列两点分布列的应用非常广泛如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究如果随机变量X的分布列为两点分布列,就称X服从两点分布 ( two一point distribution),而称=P (X = 1)为成功概率两点分布又称0一1分布由于只有两个可能结果的随机试验叫伯努利( Bernoulli ) 试验,所以还称这种分布为伯努利分布,四、课堂练习:某一射手射击所得环数分布列为45678910P002004006009028029022求此射手“射击一次命中环数7”的概率 解:“射击一次命中环数7”是指互斥事件“=7”,“=8”,“=9”,“=10”的和,根据互斥事件的概率加法公式,有:P(7)=P(=7)+P(=8)+P(=9)+P(=10)=0.88 注:求离散型随机变量的概率分布的步骤:(1)确定随机变量的所有可能的值xi(2)求出各取值的概率p(=xi)=pi(3)画出表格五、小结 :根据随机变量的概率分步(分步列),可以求随机事件的概率;两点分布是一种常见的离散型随机变量的分布,它是概率论中最重要的几种分布之一 (3) 离散型随机变量的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论