




已阅读5页,还剩61页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8 3空间图形的基本关系与公理 基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 四个公理公理1 如果一条直线上的在一个平面内 那么这条直线上所有的点都在这个平面内 即直线在平面内 公理2 经过的三点 有且只有一个平面 即可以确定一个平面 公理3 如果两个不重合的平面有一个公共点 那么它们通过这个点的公共直线 公理4 平行于同一条直线的两条直线 知识梳理 两点 不在一条直线上 有且只有一条 平行 定义 过空间任意一点p分别引两条异面直线a b的平行线l1 l2 a l1 b l2 这两条相交直线所成的叫作异面直线a b所成的角 或夹角 范围 2 直线与直线的位置关系 1 位置关系的分类 共面直线 直线 直线 异面直线 不同在一个平面内 没有公共点 相交 平行 任何 2 异面直线所成的角 锐角 或直角 3 直线与平面的位置关系有 三种情况 4 平面与平面的位置关系有 两种情况 5 等角定理空间中 如果两个角的 那么这两个角相等或互补 两边分别对应平行 平行 相交 直线在平面内 直线与平面相交 直线与 平面平行 1 唯一性定理 1 过直线外一点有且只有一条直线与已知直线平行 2 过直线外一点有且只有一个平面与已知直线垂直 3 过平面外一点有且只有一个平面与已知平面平行 4 过平面外一点有且只有一条直线与已知平面垂直 2 异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线 判断下列结论是否正确 请在括号中打 或 1 如果两个不重合的平面 有一条公共直线a 就说平面 相交 并记作 a 2 两个平面 有一个公共点a 就说 相交于过a点的任意一条直线 3 两个平面abc与dbc相交于线段bc 4 经过两条相交直线 有且只有一个平面 5 没有公共点的两条直线是异面直线 1 下列命题正确的个数为 梯形可以确定一个平面 若两条直线和第三条直线所成的角相等 则这两条直线平行 两两相交的三条直线最多可以确定三个平面 如果两个平面有三个公共点 则这两个平面重合 a 0b 1c 2d 3 考点自测 答案 解析 中两直线可以平行 相交或异面 中若三个点在同一条直线上 则两个平面相交 正确 2 2016 浙江 已知互相垂直的平面 交于直线l 若直线m n满足m n 则a m lb m nc n ld m n 答案 解析 由已知 l l 又 n n l c正确 3 已知a b是异面直线 直线c平行于直线a 那么c与ba 一定是异面直线b 一定是相交直线c 不可能是平行直线d 不可能是相交直线 答案 解析 由已知得直线c与b可能为异面直线也可能为相交直线 但不可能为平行直线 若b c 则a b 与已知a b为异面直线相矛盾 4 教材改编 如图所示 已知在长方体abcd efgh中 ab 2 ad 2 ae 2 则bc和eg所成角的大小是 ae和bg所成角的大小是 答案 解析 45 60 bc与eg所成的角等于eg与fg所成的角即 egf tan egf 1 egf 45 5 如图 正方体的底面与正四面体的底面在同一平面 上 且ab cd 则直线ef与正方体的六个面所在的平面相交的平面个数为 答案 解析 4 ef与正方体左 右两侧面均平行 所以与ef相交的侧面有4个 题型分类深度剖析 题型一平面基本性质的应用 例1 1 2016 山东 已知直线a b分别在两个不同的平面 内 则 直线a和直线b相交 是 平面 和平面 相交 的a 充分不必要条件b 必要不充分条件c 充要条件d 既不充分也不必要条件 答案 解析 若直线a和直线b相交 则平面 和平面 相交 若平面 和平面 相交 那么直线a和直线b可能平行或异面或相交 故选a 2 已知空间四边形abcd 如图所示 e f分别是ab ad的中点 g h分别是bc cd上的点 且cg bc ch dc 求证 e f g h四点共面 证明 连接ef gh 如图所示 e f分别是ab ad的中点 ef bd 又 cg bc ch dc gh bd ef gh e f g h四点共面 几何画板展示 三直线fh eg ac共点 证明 易知fh与直线ac不平行 但共面 设fh ac m m 平面efhg m 平面abc 又 平面efhg 平面abc eg m eg fh eg ac共点 思维升华 共面 共线 共点问题的证明 1 证明点或线共面问题的两种方法 首先由所给条件中的部分线 或点 确定一个平面 然后再证其余的线 或点 在这个平面内 将所有条件分为两部分 然后分别确定平面 再证两平面重合 2 证明点共线问题的两种方法 先由两点确定一条直线 再证其他各点都在这条直线上 直接证明这些点都在同一条特定直线上 3 证明线共点问题的常用方法是 先证其中两条直线交于一点 再证其他直线经过该点 跟踪训练1如图 正方体abcd a1b1c1d1中 e f分别是ab和aa1的中点 求证 1 e c d1 f四点共面 证明 如图 连接ef cd1 a1b e f分别是ab aa1的中点 ef a1b 又a1b d1c ef cd1 e c d1 f四点共面 2 ce d1f da三线共点 证明 ef cd1 ef cd1 ce与d1f必相交 设交点为p 如图所示 则由p ce ce 平面abcd 得p 平面abcd 同理p 平面add1a1 又平面abcd 平面add1a1 da p 直线da ce d1f da三线共点 题型二判断空间两直线的位置关系 例2 1 2015 广东 若直线l1和l2是异面直线 l1在平面 内 l2在平面 内 l是平面 与平面 的交线 则下列命题正确的是a l与l1 l2都不相交b l与l1 l2都相交c l至多与l1 l2中的一条相交d l至少与l1 l2中的一条相交 答案 解析 若l与l1 l2都不相交 则l l1 l l2 l1 l2 这与l1和l2异面矛盾 l至少与l1 l2中的一条相交 2 如图 在正方体abcd a1b1c1d1中 m n分别是bc1 cd1的中点 则下列判断错误的是a mn与cc1垂直b mn与ac垂直c mn与bd平行d mn与a1b1平行 答案 解析 几何画板展示 连接b1c b1d1 如图所示 则点m是b1c的中点 mn是 b1cd1的中位线 mn b1d1 又bd b1d1 mn bd cc1 b1d1 ac b1d1 mn cc1 mn ac 又 a1b1与b1d1相交 mn与a1b1不平行 故选d 3 在图中 g n m h分别是正三棱柱 两底面为正三角形的直棱柱 的顶点或所在棱的中点 则表示直线gh mn是异面直线的图形有 填上所有正确答案的序号 答案 解析 图 中 直线gh mn 图 中 g h n三点共面 但m 面ghn 因此直线gh与mn异面 图 中 连接mg gm hn 因此gh与mn共面 图 中 g m n共面 但h 面gmn 因此gh与mn异面 所以图 中gh与mn异面 思维升华 空间中两直线位置关系的判定 主要是异面 平行和垂直的判定 对于异面直线 可采用直接法或反证法 对于平行直线 可利用三角形 梯形 中位线的性质 公理4及线面平行与面面平行的性质定理 对于垂直关系 往往利用线面垂直的性质来解决 跟踪训练2 1 已知a b c为三条不重合的直线 有下列结论 若a b a c 则b c 若a b a c 则b c 若a b b c 则a c 其中正确的个数为a 0b 1c 2d 3 答案 解析 在空间中 若a b a c 则b c可能平行 也可能相交 还可能异面 所以 错 显然成立 2 2016 南昌一模 已知a b c是相异直线 是相异平面 则下列命题中正确的是a a与b异面 b与c异面 a与c异面b a与b相交 b与c相交 a与c相交c d a b 与 相交 a与b相交 答案 解析 如图 1 在正方体中 a b c是三条棱所在直线 满足a与b异面 b与c异面 但a c a 故a错误 在图 2 的正方体中 满足a与b相交 b与c相交 但a与c不相交 故b错误 如图 3 c a c 则a与b不相交 故d错误 题型三求两条异面直线所成的角 例3 2016 重庆模拟 如图 四边形abcd和adpq均为正方形 它们所在的平面互相垂直 则异面直线ap与bd所成的角为 答案 解析 如图 将原图补成正方体abcd qghp 连接gp 则gp bd 所以 apg为异面直线ap与bd所成的角 在 agp中 ag gp ap 所以 apg 引申探究 在本例条件下 若e f m分别是ab bc pq的中点 异面直线em与af所成的角为 求cos 的值 解答 设n为bf的中点 连接en mn 则 men是异面直线em与af所成的角或其补角 不妨设正方形abcd和adpq的边长为4 在 men中 由余弦定理得 思维升华 用平移法求异面直线所成的角的三步法 1 一作 根据定义作平行线 作出异面直线所成的角 2 二证 证明作出的角是异面直线所成的角 3 三求 解三角形 求出作出的角 如果求出的角是锐角或直角 则它就是要求的角 如果求出的角是钝角 则它的补角才是要求的角 跟踪训练3已知正四面体abcd中 e是ab的中点 则异面直线ce与bd所成角的余弦值为 答案 解析 画出正四面体abcd的直观图 如图所示 设其棱长为2 取ad的中点f 连接ef 设ef的中点为o 连接co 则ef bd 则 fec就是异面直线ce与bd所成的角 abc为等边三角形 则ce ab 故ce cf 因为oe of 所以co ef 典例已知m n是两条不同的直线 为两个不同的平面 有下列四个命题 若m n m n 则 若m n m n 则 若m n m n 则 若m n 则m n 其中所有正确的命题是 构造模型判断空间线面位置关系 思想与方法系列16 答案 解析 思想方法指导 本题可通过构造模型法完成 构造法实质上是结合题意构造符合题意的直观模型 然后将问题利用模型直观地作出判断 这样减少了抽象性 避免了因考虑不全面而导致解题错误 对于线面 面面平行 垂直的位置关系的判定 可构造长方体或正方体化抽象为直观去判断 返回 借助于长方体模型来解决本题 对于 可以得到平面 互相垂直 如图 1 所示 故 正确 对于 平面 可能垂直 如图 2 所示 故 不正确 对于 平面 可能垂直 如图 3 所示 故 不正确 对于 由m 可得m 因为n 所以过n作平面 且 g 如图 4 所示 所以n与交线g平行 因为m g 所以m n 故 正确 返回 课时作业 1 在下列命题中 不是公理的是a 平行于同一个平面的两个平面相互平行b 过不在同一条直线上的三点 有且只有一个平面c 如果一条直线上的两点在一个平面内 那么这条直线上所有的点都在此平面内d 如果两个不重合的平面有一个公共点 那么它们有且只有一条过该点的公共直线 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 选项a是面面平行的性质定理 是由公理推证出来的 而公理是不需要证明的 1 2 3 4 5 6 7 8 9 10 11 12 13 2 2016 福州质检 在三棱柱abc a1b1c1中 e f分别为棱aa1 cc1的中点 则在空间中与直线a1b1 ef bc都相交的直线a 不存在b 有且只有两条c 有且只有三条d 有无数条 答案 解析 在ef上任意取一点m 直线a1b1与m确定一个平面 这个平面与bc有且仅有1个交点n 当m的位置不同时确定不同的平面 从而与bc有不同的交点n 而直线mn与a1b1 ef bc分别有交点p m n 如图 故有无数条直线与直线a1b1 ef bc都相交 1 2 3 4 5 6 7 8 9 10 11 12 13 3 对于任意的直线l与平面 在平面 内必有直线m 使m与la 平行b 相交c 垂直d 互为异面直线 答案 解析 不论l l 还是l与 相交 内都有直线m使得m l 1 2 3 4 5 6 7 8 9 10 11 12 13 4 在四面体abcd的棱ab bc cd da上分别取e f g h四点 如果ef与hg交于点m 则a m一定在直线ac上b m一定在直线bd上c m可能在ac上 也可能在bd上d m既不在ac上 也不在bd上 答案 解析 由于ef hg m 且ef 平面abc hg 平面acd 所以点m为平面abc与平面acd的一个公共点 而这两个平面的交线为ac 所以点m一定在直线ac上 故选a 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 此题相当于一个正方形沿着对角线折成一个四面体 长为a的棱长一定大于0且小于 故选a 1 2 3 4 5 6 7 8 9 10 11 12 13 6 下列命题中 正确的是a 若a b是两条直线 是两个平面 且a b 则a b是异面直线b 若a b是两条直线 且a b 则直线a平行于经过直线b的所有平面c 若直线a与平面 不平行 则此直线与平面内的所有直线都不平行d 若直线a 平面 点p 则平面 内经过点p且与直线a平行的直线有且只有一条 答案 解析 对于a 当 a b分别为第三个平面 与 的交线时 由面面平行的性质可知a b 故a错误 对于b 设a b确定的平面为 显然a 故b错误 对于c 当a 时 直线a与平面 内的无数条直线都平行 故c错误 易知d正确 故选d 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 7 2016 昆明模拟 若两条异面直线所成的角为60 则称这对异面直线为 黄金异面直线对 在连接正方体各顶点的所有直线中 黄金异面直线对 共有 对 答案 解析 24 如图 若要出现所成角为60 的异面直线 则直线需为面对角线 以ac为例 与之构成黄金异面直线对的直线有4条 分别是a b bc a d c d 正方形的面对角线有12条 所以所求的 黄金异面直线对 共有 24对 每一对被计算两次 所以要除以2 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 8 如图是正四面体 各面均为正三角形 的平面展开图 g h m n分别为de be ef ec的中点 在这个正四面体中 gh与ef平行 bd与mn为异面直线 gh与mn成60 角 de与mn垂直 以上四个命题中 正确命题的序号是 答案 解析 把正四面体的平面展开图还原 如图所示 gh与ef为异面直线 bd与mn为异面直线 gh与mn成60 角 de mn 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 9 2015 浙江 如图 三棱锥a bcd中 ab ac bd cd 3 ad bc 2 点m n分别是ad bc的中点 则异面直线an cm所成的角的余弦值是 答案 解析 如图所示 连接dn 取线段dn的中点k 连接mk ck m为ad的中点 mk an kmc为异面直线an cm所成的角 ab ac bd cd 3 ad bc 2 n为bc的中点 1 2 3 4 5 6 7 8 9 10 11 12 13 在 ckm中 由余弦定理 得 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 10 2016 郑州质检 如图 矩形abcd中 ab 2ad e为边ab的中点 将 ade沿直线de翻折成 a1de 若m为线段a1c的中点 则在 ade翻折过程中 下面四个命题中不正确的是 答案 解析 bm是定值 点m在某个球面上运动 存在某个位置 使de a1c 存在某个位置 使mb 平面a1de 1 2 3 4 5 6 7 8 9 10 11 12 13 取dc中点f 连接mf bf mf a1d且mf a1d fb ed且fb ed 所以 mfb a1de 由余弦定理可得mb2 mf2 fb2 2mf fb cos mfb是定值 所以m是在以b为圆心 mb为半径的球上 可得 正确 由mf a1d与fb ed可得平面mbf 平面a1de 可得 正确 a1c在平面abcd中的投影与ac重合 ac与de不垂直 可得 不正确 1 2 3 4 5 6 7 8 9 10 11 12 13 11 如图 在正方体abcd a1b1c1d1中 o为正方形abcd的中心 h为直线b1d与平面acd1的交点 求证 d1 h o三点共线 解答 如图 连接bd b1d1 则bd ac o bb1綊dd1 四边形bb1d1d为平行四边形 又h b1d b1d 平面bb1d1d 则h 平面bb1d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校日常微管理制度
- 学校运动区管理制度
- 学生接送车管理制度
- 孵化厂销售管理制度
- 安全及消防管理制度
- 安全运行与管理制度
- 实名制入井管理制度
- 实验室培训管理制度
- 客户为中心管理制度
- 宣讲员聘用管理制度
- 室内装修工程应急预案范本
- 往年广东中考高频词汇总结范文(全国中考阅读及完型高频词)
- 学校(幼儿园)每周食品安全排查治理报告(整学期16篇)
- 延期交房起诉状开发商违约金起诉状
- 心内科用药安全管理课件
- GB/T 20453-2022柿子产品质量等级
- 赣美2011版三年级美术下册《瓜果飘香》教案及教学反思
- 维修改造工程施工组织设计
- 执行力案例分享与解析课件
- 电路理论知到章节答案智慧树2023年同济大学
- 新版心肺复苏流程图
评论
0/150
提交评论