2019_2020学年高中数学第2讲证明不等式的基本方法2综合法与分析法学案新人教A版.docx_第1页
2019_2020学年高中数学第2讲证明不等式的基本方法2综合法与分析法学案新人教A版.docx_第2页
2019_2020学年高中数学第2讲证明不等式的基本方法2综合法与分析法学案新人教A版.docx_第3页
2019_2020学年高中数学第2讲证明不等式的基本方法2综合法与分析法学案新人教A版.docx_第4页
2019_2020学年高中数学第2讲证明不等式的基本方法2综合法与分析法学案新人教A版.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二综合法与分析法学习目标:1.了解综合法与分析法证明不等式的思考过程与特点(重点)2.会用综合法、分析法证明简单的不等式(难点)教材整理1综合法阅读教材P23P23“例2”,完成下列问题一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,又叫顺推证法或由因导果法设a,bR,A,B,则A,B的大小关系是()AABBABCAB DABCA2()2a2b,B2ab,所以A2B2.又A0,B0,所以AB.教材整理2分析法阅读教材P24P25“习题”以上部分,完成下列问题证明命题时,我们还常常从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法设a,b,c,那么a,b,c的大小关系是()Aabc BacbCbac DbcaB由已知,可得出a,b,c,2,bca.用综合法证明不等式【例1】已知a,b,c是正数,求证:abc.精彩点拨由a,b,c是正数,联想去分母,转化证明b2c2c2a2a2b2abc(abc),利用x2y22xy可证或将原不等式变形为abc后,再进行证明自主解答法一a,b,c是正数,b2c2c2a22abc2,b2c2a2b22ab2c,c2a2a2b22a2bc,2(b2c2c2a2a2b2)2(abc2ab2ca2bc),即b2c2c2a2a2b2abc(abc)又abc0,abc.法二a,b,c是正数,22c.同理2a,2b,22(abc)又a0, b0,c0,b2c2a2c2a2b2abc(abc)故abc.1综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间、不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式(切入点),这是证明的关键2综合法证明不等式的主要依据:(1)不等式的基本性质;(2)基本不等式及其变形;(3)三个正数的算术几何平均不等式等1已知a0,b0,c0,且abc2.求证:(1a)(1b)(1c)8.证明a0,b0,c0,1a2,当且仅当a1时,取等号,1b2,当且仅当b1时,取等号,1c2,当且仅当c1时,取等号abc2,a,b,c不能同时取1,“”不同时成立(1a)(1b)(1c)88.即(1a)(1b)(1c)8.综合法与分析法的综合应用【例2】设实数x,y满足yx20,且0a1,求证:loga(axby)loga2.精彩点拨要证的不等式为对数不等式,结合对数的性质,先用分析法探路,转化为要证明一个简单的结论,然后再利用综合法证明自主解答由于0a1,则tlogax(x0)为减函数欲证loga(axay)loga2,只需证axay2a.yx20,0a1,xyxx2.当且仅当x时,(xy)max,axya,a.又axay2(当且仅当xy取等号), axay2a.由于,等号不能同时成立,式等号不成立,即axay2a成立故原不等式loga(axay)loga2成立1通过等式或不等式运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明体现了分析法与综合法之间互为前提、互相渗透、相互转化的辩证关系2函数与不等式综合交汇,应注意函数性质在解题中的运用2已知a,b,c都是正数,求证:23.证明法一要证23,只需证ab2abc3,即2c3,移项,得c23.由a,b,c都为正数,得c2c3,原不等式成立法二a,b,c都是正数,c33,即c23,故2c3,ab2abc3,23.分析法证明不等式探究问题1如何理解分析法寻找的是充分条件?提示用分析法证明,其叙述格式是:要证明A,只需证明B.即说明只要有B成立,就一定有A成立因此分析法是“执果索因”,步步寻求上一步成立的充分条件分析法体现了数学中“正难则反”的原则,也是思维中的逆向思维,逆求(不是逆推)结论成立的充分条件2综合法与分析法有何异同点?提示综合法与分析法的异同点方法证明的起始步骤证法过程前后逻辑关系证题方向综合法已知条件或已学过的定义、定理、性质等格式:AB1B2BnB由已知条件开始推导其成立的必要条件(结论)由因导果分析法要证明的结论格式:BB1B2BnA由结论开始探索其成立的充分条件(已知)执果索因【例3】已知ab0,求证:.精彩点拨本题要证明的不等式显得较为复杂,不易观察出怎样由ab0得到要证明的不等式,因而可以用分析法先变形要证明的不等式,从中找到证题的线索自主解答要证原不等式成立,只需证ab2,即证()2.只需证,即1,即1.只需证1.ab0,1成立原不等式成立1解答本题的关键是在不等式两边非负的条件下,利用不等式的开方性质寻找结论成立的充分条件,采用分析法是常用方法证明过程一要注意格式规范,二要注意逻辑关系严密、准确2当所证不等式与重要不等式、基本不等式没有什么直接联系,或条件与结论之间的关系不明显时,可用分析法来寻找证明途径常常利用移项、去分母、平方、开方等方法进行分析探路3已知a0,求证: a2.证明因为a0,要证原不等式成立,只需证2a,即证a24422,只需证a,即证2a22,只需证a22.由基本不等式知a22显然成立,所以原不等式成立1已知a0,1b0,则()Aaabab2Bab2abaCabaab2 Dabab2aD1b0,1b20b.又a0,abab2a.2下列三个不等式:a0b;ba0;b0a.其中能使成立的充分条件有()A BC DAa0b;ba0;b0a.故选A.3已知a,b(0,),Q,则P,Q的大小关系是_解析ab,.答案PQ4若0,则下列不等式:abab;|a|b|;ab;2.其中正确的有_(填序号)解析0,ba0,故正确,错

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论