《等腰三角形的性质》说课稿范文_第1页
《等腰三角形的性质》说课稿范文_第2页
《等腰三角形的性质》说课稿范文_第3页
《等腰三角形的性质》说课稿范文_第4页
《等腰三角形的性质》说课稿范文_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

等腰三角形的性质说课稿等腰三角形的性质是初中几何第二册第三章的内容,是全等三角形的续篇。那么以下是xx为大家整理的关于这节课的说课稿,欢迎大家阅读!本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直平分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。重点:等腰三角形的性质的探究及应用难点:等腰三角形“三线合一”性质的运用教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。创设情景,引入新知我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形等腰三角形。等腰三角形的有关概念,轴对称图形的有关概念。提问:等腰三角形是不是轴对称图形?什么是它的对称轴?实验探索,大胆猜想教师演示等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。证明猜想,形成定理让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。1、性质定理1:等腰三角形的两个底角相等在ABC中,AB=ACB=C2、性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合AB=AC1=2BD=DCADBCAB=ACBD=DC 1=2ADBCAB=ACADBC于DBD=DC1=2应用举例,强化训练指导学生表述证明过程。思考题:等腰三角形两腰上的中线是否相等?为什么?归纳小结,布置作业1、归纳:等腰三角形的性质定理。等边三角形的性质利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。联想方法要经常运用,对解题大有裨益。2、作业布置:必做题:书本课后作业选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?1、教材的地位和作用等腰三角形的性质是“华东师大版八年级数学”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作观察发现猜想论证应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。2、教材的教学目标:知识与技能目标:掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。过程与方法目标:通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。情感与态度目标:通过合作交流培养学生团结协作、乐于助人的品质。3、教学重点与难点:重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作观察发现猜想论证应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。数学课程标准指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。创设情景、导入新课复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。等腰三角形的相关概念:1定义:两条边相等的三角形叫做等腰三角形。边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。设问:等腰三角形具有哪些特殊的性质呢?实验探索、得出猜想:动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:(1)等腰三角形是轴对称图形(2)B=C(3)BD=CD,AD为底边上的中线(4)ADB=ADC=90,AD为底边上的高线(5)BAD=CAD,AD为顶角平分线证明猜想、形成定理:1、结论(2)B=C你能用一个命题表达这一结论并论证它的正确性吗?语言总结:等腰三角形的两底角相等。怎样论证这个一命题的正确性呢?为证B=C,需要添加辅助线构造以B、C为元素的两个全等三角形。探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同的方法来解决问题。利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。得出等腰三角形的性质1:等腰三角形的两底角相等。2、结论你也能用一个命题表达这一结论并论证它的正确性吗?结合性质一的证明鼓励学生证明总结的命题得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。“三线合一”的几何表达:如图,在ABC中,AB=AC,点D在BC上如果BAD=CAD,那么ADBC,BD=CD如果BD=CD,那么BAD=CAD,ADBC如果ADBC,那么BAD=CAD,BD=CD2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。实例剖析、巩固新知:1、例1:已知:在ABC中,AB=AC,B80,求C和A的度数2、例2:在ABC中,AB=AC,点D是BC的中点,B=30求ADC的度数求BAD的度数此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。解:(1)AB=AC,D是BC边上的中点ADBC,BAD=CAD(等腰三角形的“三线合一”)ADC=ADB=90(垂直的定义)(2)BAD+B+ADB=180BAD=180-B-ADB=180-30-90=60、课堂练习、总结所得:1、先完成课后81页练习1、2、3、4题2、学以致用:如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:工人师傅在测量了B为37以后,并没有测量C,就说C的度数也是37。工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。请同学们想想,工人师傅的说法对吗?请说明理由。设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论