




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22 2二次函数与一元二次方程 知识点一 知识点二 知识点一二次函数y ax2 bx c与一元二次方程ax2 bx c 0的根之间的关系一般地 从二次函数y ax2 bx c的图象可得如下结论 1 如果抛物线y ax2 bx c与x轴有公共点 公共点的横坐标是x0 那么当x x0时 函数值是0 因此x x0是方程ax2 bx c 0的一个根 2 二次函数y ax2 bx c的图象与x轴的位置关系有三种 没有公共点 有一个公共点 有两个公共点 这对应着一元二次方程ax2 bx c 0的根的三种情况 没有实数根 有两个相等实数根 有两个不等实数根 知识点一 知识点二 名师解读 二次函数y ax2 bx c与一元二次方程ax2 bx c 0的根之间的关系 1 b2 4ac 0 一元二次方程ax2 bx c 0 a 0 有两个不相等的根x1 x2 二次函数y ax2 bx c与x轴有两个不同的交点 x1 0 和 x2 0 2 b2 4ac 0 一元二次方程ax2 bx c 0 a 0 有两个相等的根x1 x2 二次函数y ax2 bx c与x轴只有唯一的一个交点 x1 0 3 b2 4ac 0 一元二次方程ax2 bx c 0 a 0 无实数根 二次函数y ax2 bx c与x轴无交点 知识点一 知识点二 例1已知抛物线y x2 2x 8 求它与x轴的交点和抛物线顶点的坐标 分析 把已知函数解析式配方 即可求出抛物线的顶点坐标 令y 0即可求出抛物线与x轴的交点 解 y x2 2x 8 x 1 2 9 抛物线顶点的坐标为 1 9 令y 0 则0 x2 2x 8 解得x 4或 2 抛物线与x轴的交点坐标为 4 0 或 2 0 知识点一 知识点二 求抛物线与x轴的交点坐标 只要令y 0 得到关于x的一元二次方程ax2 bx c 0 解方程即可 知识点一 知识点二 知识点二用图象法求一元二次方程的近似解用图象法求一元二次方程的近似解的基本步骤 1 画出二次函数的图象 2 确定抛物线与x轴交点的个数 3 确定数值 即确定抛物线与x轴交点的横坐标的近似值 4 写出方程的解 即根据交点的情况和数值写出一元二次方程的近似解 或根 名师解读 由于图象法准确度有限 所以求得的结果是一元二次方程的近似解 可以有一定的误差 知识点一 知识点二 例2利用函数图象求方程x2 2x 5 0的实数根 精确到0 1 分析 要利用图象求方程x2 2x 5 0的实数根 首先画出二次函数y x2 2x 5的图象 然后估计函数图象与x轴交点 交点的横坐标就是方程的根 解 函数y x2 2x 5的图象如图所示 由图象可知抛物线与x轴的两个交点的横坐标分别在 4和 3 1和2之间 也就是方程x2 2x 5 0有两个根 一个在 4和 3之间 另一个在1和2之间 知识点一 知识点二 1 先求 4和 3之间的根 作出函数y x2 2x 5的对应值表 如下表 由表知x 3 4是方程的一个近似根 2 另一个根在1和2之间 作出函数y x2 2x 5的对应值表 如下表 由表知x 1 4是方程的另一个近似根 所以方程的两个近似根为x1 3 4 x2 1 4 知识点一 知识点二 1 准确画出二次函数y ax2 bx c a 0 的图象 画图时要先确定抛物线的顶点 再在顶点两侧取相对称的点 至少描五点来连线 2 确定抛物线与x轴的交点在哪两个数之间 3 列表格 在第 2 步中确定的两个数之间取值 进行估计 通常只精确到十分位即可 注意 在实际的解题过程中 可通过观察图象得到方程的近似根 一般不需要列表探究 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点一利用 交点式 确定二次函数的解析式例1已知二次函数的图象与x轴的交点为 3 0 1 0 与y轴交点为 0 3 1 求二次函数的解析式 2 求二次函数的对称轴及顶点坐标 分析 1 二次函数的图象与x轴的交点为 3 0 1 0 可设二次函数解析式为y a x 3 x 1 把与y轴交点坐标 0 3 代入即可求解 2 根据二次函数解析式即可求出对称轴及顶点坐标 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 解 1 设二次函数解析式为y a x 3 x 1 把 0 3 代入得 3a 3 a 1 故二次函数解析式为y x 3 x 1 2 y x 3 x 1 x2 2x 3 x 1 2 4 该二次函数的对称轴为x 1 顶点坐标为 1 4 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 当已知二次函数图象与x轴两交点的坐标 或根据已知条件能得出二次函数的图象与x轴两交点的坐标 时 一般利用交点式 实际是三点式的特殊情况 是三点中的两点是x轴上的点 求解二次函数的解析式 这种方法的优点是计算相对简便 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点二求抛物线与x轴的交点有关的图形面积例2若抛物线y ax2 bx c的顶点是a 2 1 与x轴交于b c两点 且b点坐标为 1 0 与y轴交于点d 求 bcd的面积 分析 设抛物线的解析式为y a x h 2 k 由a和b的坐标可求出抛物线的解析式 所以d的坐标可求出 根据顶点的坐标可知抛物线的对称轴 再由b的坐标可求出c点的坐标 bc的长度可求 利用三角形的面积公式计算即可 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 解 设抛物线的解析式为y a x h 2 k 顶点是a 2 1 y a x 2 2 1 点b 1 0 在抛物线上 0 a 1 a 1 y x 2 2 1 点d的坐标为 0 3 点b的坐标为 1 0 点c的坐标为 3 0 bc 2 bcd的面积 2 3 3 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 在坐标系中求三角形的面积 一般把三角形的底边 放在 坐标轴上 当底边在x轴上时 高是纵坐标的绝对值 当底边在y轴上时 高是横坐标的绝对值 如果坐标轴把该三角形分成两个三角形 则先分别求出两个三角形的面积 最后再相加即可 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点三与抛物线和x轴的交点有关的综合题例3如图 抛物线y ax2 bx c的对称轴为x 1 抛物线与x轴交于a b两点 与y轴交于点c 其中点a的坐标为 3 0 1 求点b的坐标 2 若点p在抛物线上 a 1 且s poc 4s boc 求点p的坐标 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 分析 1 由抛物线的对称性可知 点b c到对称轴的距离相等可求得b点的坐标 2 由条件可先求得抛物线的解析式 再求得 boc的面积 结合条件可求得p点到y轴的距离 即p点的横坐标的绝对值 代入可求得p点坐标 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 利用待定系数法确定二次函数的解析式或求二次函数与x轴交点坐标的时候 运用二次函数图象的对称性 往往是解答问题的突破口 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点四二次函数y ax2 bx c的图象与系数a b c及b2 4ac的关系例4二次函数y ax2 bx c的图象如图所示 则abc b2 4ac 2a b a b c这四个式子中 值为正数的有 a 4个b 3个c 2个d 1个 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 解析 1 abc 0 理由是 抛物线开口向上 a 0 抛物线交y轴于y轴负半轴 c0 而a 0 得b0 2 b2 4ac 0 理由是 抛物线与x轴有两个交点 b2 4ac 0 3 2a b 0 理由是 00 b0 4 a b c 0 理由是 由图象可知 当x 1时 y a b c 0 综上所述 abc b2 4ac 2a b a b c这四个式子中 值为正数的有3个 答案 b 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 解答这类问题 需要数形结合对每一种情况都要综合分析 然后作出判断 一般方法是 1 首先根据开口方向判断a的符号 结合对称轴确定b的值或符号 根据抛物线与y轴交点的位置确定c的值或符号 2 其次根据抛物线与x轴交点的个数确定b2 4ac的符号 3 最后根据以上各式的值或符号结合图象的几何性质再判断其他代数式的符号或值 拓展点一 拓展点二 拓展点三 拓展点四 拓展点五 拓展点五利用图象解不等式例5 2015秋 盐都区期末 已知二次函数y x2 bx c的图象如图所示 若y 0 则x的取值范围是 a 13d x4解析 求y 0时x的取值范围 就是求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智慧水务行业当前竞争格局与未来发展趋势分析报告
- 2025年消费金融行业当前竞争格局与未来发展趋势分析报告
- 支护工操作规程课件
- 2024年人工智能及应用公需科目试题及答案
- (2025)物业管理考试题库及参考答案
- 2025年中华护理学会团标标准解读试题(真题及答案)
- 2024年网络数据安全维护知识考试题库与答案
- 2025年浙医二院抗菌药物处方权培训考试试题及答案(内科卷)
- 2024压力性损伤考试题及答案
- 摄影课件的模式
- 2022年版《义务教育信息科技技术新课程标准》试题与答案
- (完整word版)中国户口本英文翻译模板
- 反家暴法课件
- JJG 366-2004接地电阻表
- 外来手术器械及植入物管理课件
- DB37-T 3080-2022 特种设备作业人员配备要求
- 新北师大单元分析六上第六单元《比的认识》单元教材解读
- Q∕SY 13001-2016 承荷探测电缆采购技术规范
- GB∕T 33425-2016 化工产品中防结块剂抗结块性能的评价方法
- 华为客户接待规范接待礼仪课件
- 地基动力特征参数的选用
评论
0/150
提交评论