




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章 概率条件概率【例1】在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率思路探究本题是条件概率问题,根据条件概率公式求解即可解设“第1次抽到理科题”为事件A,“第2题抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n()A20.根据分步计数原理,n(A)AA12.于是P(A).(2)因为n(AB)A6,所以P(AB).(3)由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率P(B|A).条件概率的求法(1)利用定义,分别求出P(A)和P(AB),得P(B|A).(2)借助古典概型公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数n(AB),得P(B|A).提醒:求事件概率的关键是将事件分解为若干个小事件,然后利用概率的加法(互斥事件的求和)、乘法(独立事件同时发生)或除法公式(条件概率)来求解1掷两颗均匀的骰子,已知第一颗骰子掷出6点,问“掷出点数之和大于或等于10”的概率解设“掷出的点数之和大于或等于10”为事件A,“第一颗骰子掷出6点”为事件B.法一:P(A|B).法二:“第一颗骰子掷出6点”的情况有(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共6种,故n(B)6.“掷出的点数之和大于或等于10”且“第一颗掷出6点”的情况有(6,4),(6,5),(6,6),共3种,即n(AB)3.从而P(A|B).相互独立事件同时发生的概率【例2】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求P(X1)思路探究解决本题的关键是将复杂事件拆分成若干个彼此互斥事件的和或几个彼此相互独立事件的积事件,再利用相应公式求解解记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备(1)DA1BCA2BA2C,P(B)0.6,P(C)0.4,P(Ai)C0.52,i0,1,2,所以P(D)P(A1BCA2BA2C)P(A1BC)P(A2B)P(A2C)P(A1)P(B)P(C)P(A2)P(B)P(A2)P()P(C)0.31.(2)X1表示在同一工作日有一人需使用设备P(X1)P(BA0A0CA1)P(B)P(A0)P()P()P(A0)P(C)P()P(A1)P()0.60.52(10.4)(10.6)0.520.4(10.6)20.52(10.4)0.25.求相互独立事件同时发生的概率需注意的三个问题(1)“P(AB)P(A)P(B)”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系(3)公式“P(AB)1P( )”常应用于求相互独立事件至少有一个发生的概率提醒:有放回地依次取出3个球,相当于独立重复事件,即B,则可根据独立重复事件的定义求解2某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6.且各题答对与否相互之间没有影响(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率解记“这名同学答对第i个问题”为事件Ai(i1,2,3),则P(A1)0.8,P(A2)0.7,P(A3)0.6.(1)这名同学得300分的概率为:P1P(A12A3)P(1A2A3)P(A1)P(2)P(A3)P(1)P(A2)P(A3)0.80.30.60.20.70.60.228.(2)这名同学至少得300分的概率为:P2P1P(A1A2A3)P1P(A1)P(A2)P(A3)0.2280.80.70.60.564.离散型随机变量的分布列、均值和方差【例3】甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为.(1)求甲队分别胜乙队和丙队的概率P1,P2;(2)设在该次比赛中,甲队得分为,求的分布列及数学期望、方差思路探究(1)通过列方程组求P1和P2;(2)由题意求出甲队得分的可能取值,然后再求出的分布列,最后再求出数学期望和方差解(1)设“甲队胜乙队”的概率为P1,“甲队胜丙队”的概率为P2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P1P2. 乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获得第一名的概率为(1P1). 解,得P1,代入,得P2,所以甲队胜乙队的概率为,甲队胜丙队的概率为.(2)的可能取值为0,3,6.当0时,甲队两场比赛皆输,其概率为P(0);当3时,甲队两场只胜一场,其概率为P(3);当6时,甲队两场皆胜,其概率为P(6).所以的分布列为036P所以E()036.V()222.求离散型随机变量的期望与方差的步骤3为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名从这8名运动员中随机选择4人参加比赛(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望解(1)由已知,有P(A).所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(Xk)(k1,2,3,4)所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)1234.二项分布【例4】某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是,甲、丙两人都答错的概率是,乙、丙两人都答对的概率是,规定每队只要有一人答对此题则该队答对此题(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10分若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分)解(1)记甲、乙、丙分别答对此题为事件A,B,C,由已知,得P(A),1P(A)1P(C),P(C).又P(B)P(C),P(B).该单位代表队答对此题的概率P1.(2)记X为该单位代表队必答题答对的道数,Y为必答题的得分,则XB,E(X)10.而Y20X10(10X)30X100,E(Y)30E(X)100184.二项分布中需要注意问题和关注点(1)当X服从二项分布时,应弄清XB(n,p)中的试验次数n与成功概率p.(2)解决二项分布问题的两个关注点对于公式P(Xk)Cpk(1p)nk(k0,1,2,n),必须在满足“独立重复试验”时才能应用,否则不能应用该公式判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验是独立重复地进行了n次4某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数X的分布列解由题意,得到的次品数XB(2,0.05),P(X0)C0.9520.902 5;P(X1)C0.050.950.095;P(X2)C0.0520.002 5.因此,次品数X的分布列如下:Xk012P(Xk)0.902 50.0950.002 5正态分布【例5】某学校高三2 500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X在550600分的人数思路探究根据正态分布的性质求出P(550x600),即可解决在550600分的人数解考生成绩XN(500,502),500,50,P(550X600)P(500250X500250)P(50050X50050)(0.954 40.682 6)0.135 9,考生成绩在550600分的人数为2 5000.135 9340(人)正态分布的概率求法(1)注意“3”原则,记住正态总体在三个区间内取值的概率(2)注意数形结合由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题5为了了解某地区高三男生的身体发育状况,抽查了该地区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质保部专业知识培训内容课件
- 2025场监督管理局数字化转型专项信息化服务合同
- 2025版企业员工福利大米团购服务合同范本
- 2025年高空作业吊车租赁合同范例
- 2025年智能住宅区合作开发合同范本
- 2025版服装品牌设计合作合同范本
- 2025年度城市公园环境卫生维护承包合同
- 2025年度机关单位食堂社会化服务合同范本
- 2025年拆迁房买卖合同及搬迁补偿金计算方法协议
- 2025年度房产抵押消费贷款按揭合同范本生活品质提升
- 2025年国家统一司法考试真题及答案
- 绿色矿山培训课件
- 纪念抗美援朝队会课件
- 2025-2026学年人教版(2024)小学数学三年级上册(全册)教学设计(附目录P296)
- 2025广东茂名市信宜市供销合作联社招聘基层供销社负责人2人笔试模拟试题及答案解析
- 医院护理人文关怀实践规范专家共识
- 成人反流误吸高危人群全身麻醉管理专家共识(2025版)解读
- 初二体育课程教学计划及实施
- 2025年山东省临沂市、枣庄市、聊城市、菏泽市、济宁市中考语文试题解读
- 浙江省金华市婺城区2024-2025学年七年级上学期语文期中考试试卷(含答案)
- 2025年10月自考00227公司法真题及答案
评论
0/150
提交评论